Answer:
Newton's laws are very important because they tie into almost everything we see in everyday life. These laws tell us exactly how things move or sit still, like why you don't float out of bed or fall through the floor of your house.
Explanation: Newton's laws of motion are important because they are the foundation of classical mechanics, one of the main branches of physics. Mechanics is the study of how objects move or do not move when forces act upon them.
Answer:
c.boron-11
Explanation:
The atomic mass of boron is 10.81 u.
And 10.81 u is a lot closer to 11u than it is to 10u, so there must be more of boron-11.
To convince you fully, we can also do a simple calculation to find the exact proportion of boron-11 using the following formula:
(10u)(x)+(11u)(1−x)100%=10.81u
Where u is the unit for atomic mass and x is the proportion of boron-10 out of the total boron abundance which is 100%.
Solving for x we get:
11u−ux=10.81u
0.19u=ux
x=0.19
1−x=0.81
And thus the abundance of boron-11 is roughly 81%.
Protons and neutrons are found inside the nucleus
Answer:
0.0277 M.
Explanation:
The integral rate law of a first order reaction:
<em>Kt = ln ([A₀]/[A]),</em>
where, k is the rate constant of the reaction <em>(k = 3.36 × 10⁻⁵ s⁻¹)</em>,
t is the time of the reaction <em>(t = 235.0 min = 14100 s)</em>,
[A₀] is the initial concentration of cyclopropane <em>([A₀] = 0.0445 M)</em>
<em>∵ Kt = ln ([A₀]/[A]),</em>
∴ (3.36 × 10⁻⁵ s⁻¹)(14100 s) = ln (0.0445 M)/[A]
Taking the exponential of both sides:
1.6 = (0.0445 M)/[A]
<em>∴ [A] = (0.0445 M)/1.6 = 0.0277 M.</em>
<em />
Answer:
The answer is B
Explanation:
The answer is B because representative particles can only be atoms.