solution:
A = 192 x (1/2) ^ (15/5) = 192 x (1/2) ^3 = 192 x 1/8 = 24 mg
Starting by hitting acetylene with NaNH2 to deprotonate, this C-- will attack the C connected to the Br Sn2 style to lengthen the chain by two carbons.
Do this same thing again with the other CH of the acetylene and another bromoethaneto get a six carbon chain, namely, 3-hexyne.
Now, reduce the alkyne to an alkene via H2/Pd/C, and that gives 3-hexene.
Answer:
The most likely outcome is that carrier protein dysfunction will increase the gradient which will lead to disruption of cellular metabolism.
Explanation:
Principle Quantum Numbers : It describes the size of the orbital and the energy level. It is represented by n. Where, n = 1,2,3,4....
Azimuthal Quantum Number : It describes the shape of the orbital. It is represented as 'l'. The value of l ranges from 0 to (n-1). For l = 0,1,2,3... the orbitals are s, p, d, f...
s = 1 orbital
p = 3 orbitals
d = 5 orbitals
f = 7 orbitals
For n = 4
l = 0 to (n-1) = 0 to 3 = (4s , 4p , 4d , 4f)
Number of subshells = 4
Number of orbitals = 1 + 3 + 5 + 7 = 16
The maximum number of electrons the n = 4 shell can contain:
Each orbital can holds upto two electrons, then 16 orbitals will have :

32 is the maximum number of electrons the n = 4 shell can contain
Molarity is defined as the moles of solute per liter of solution.
. Where M is molarity, n is the number of moles and V is the volume. First we must find the molar mass of
which is 109.98 g/mol


Then we find the molarity using above equation
