Answer:
2.82 L
T₁ = 303 K
T₂ = 263 K
The final volume is smaller.
Explanation:
Step 1: Given data
- Initial temperature (T₁): 30 °C
- Initial volume (V₁): 3.25 L
- Final temperature (T₂): -10 °C
Step 2: Convert the temperatures to Kelvin
We will use the following expression.
K = °C + 273.15
T₁: K = 30°C + 273.15 = 303 K
T₂: K = -10°C + 273.15 = 263 K
Step 3: Calculate the final volume of the balloon
Assuming constant pressure and ideal behavior, we can calculate the final volume using Charles' law. Since the temperature is smaller, the volume must be smaller as well.
V₁/T₁ = V₂/T₂
V₂ = V₁ × T₂/T₁
V₂ = 3.25 L × 263 K/303 K = 2.82 L
This is an example of displacement reaction
<u>Explanation:</u>
- The chemical reaction in which the one element replaces the other element in a compound is called a displacement reaction. This reaction is also called a replacement reaction.
AB + C -----> AC +B
2ZnS + 3O2 -----> 2ZnO + 2SO2
- This happens when A is more reactive than B and gives a stable product. Here the zinc sulfide compound reacts with the oxygen element to the stable product of zinc oxide and sulfur dioxide.
- In short, the more reactive element displaces the less reactive element is called a displacement reaction.
Explanation:The five major branches of chemistry are organic, inorganic, analytical, physical, and biochemistry.
...
Sub-branches of physical chemistry include:
Photochemistry — the study of the chemical changes caused by light.
Surface chemistry — the study of chemical reactions at surfaces of substances
<span>Active transport runs counter to facilitated diffusion. In active transport, molecules move against the concentration gradients, running from areas of lower concentration to areas of higher concentration. This is where energy is used.</span>