Forming a covalent bond
A covalent bond is formed when two atoms share a pair of electrons. Covalent bonding occurs in most non-metal elements, and in compounds formed between non-metals.
These shared electrons are found in the outer shells of the atoms. Usually each atom contributes one electron to the shared pair of electrons.
The slideshow shows how a covalent bond forms between a hydrogen atom and a chlorine atom, making hydrogen chloride.
Structures of a hydrogen atom and a chlorine atom.
1. A hydrogen atom with one electron and a chlorine atom with 17 electrons
Molecules
Most covalently bonded substances consist of small molecules. A molecule is a group of two or more atoms joined together by covalent bonds. Molecules of the same element or compound always contain the same number of atoms of each element.
The atoms in a molecule are always joined together by a covalent bond. Substances that are made up of ions do not form molecules.
Sizes of atoms and simple molecules
A small molecule contains only a few atoms, so atoms and small molecules have a similar range of sizes. They are very small, typically around 0.1 nm or 1 × 10-10 m across.
Ps please mark me as brainiest please
Answer:
- <em>The solution that has the highest concentration of hydroxide ions is </em><u>d. pH = 12.59.</u>
Explanation:
You can solve this question using just some chemical facts:
- pH is a measure of acidity or alkalinity: the higher the pH the lower the acidity and the higher the alkalinity.
- The higher the concentration of hydroxide ions the lower the acidity or the higher the alkalinity of the solution, this is the higher the pH.
Hence, since you are asked to state the solution with the highest concentration of hydroxide ions, you just pick the highest pH. This is the option d, pH = 12.59.
These mathematical relations are used to find the exact concentrations of hydroxide ions:
- pH + pOH = 14 ⇒ pOH = 14 - pH
- pOH = - log [OH⁻] ⇒
![[OH^-]=10^{-pOH}](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E%7B-pOH%7D)
Then, you can follow these calculations:
Solution pH pOH [OH⁻]
a. 3.21 14 - 3.21 = 10.79 antilogarithm of 10.79 = 1.6 × 10⁻¹¹
b. 7.00 14 - 7.00 = 7.00 antilogarithm of 7.00 = 10⁻⁷
c. 7.93 14 - 7.93 = 6.07 antilogarithm of 6.07 = 8.5 × 10⁻⁷
d. 12.59 14 - 12.59 = 1.41 antilogarithm of 1.41 = 0.039
e. 9.82 14 - 9.82 = 4.18 antilogarithm of 4.18 = 6.6 × 10⁻⁵
From which you see that the highest concentration of hydroxide ions is for pH = 12.59.
Answer:
C. The thermal energy of a substance.
Explanation:
Hope it helps.