Answer:
The average force the golf club exerts on the ball is 600 N
Explanation:
Newton's second law of motion states that force, F, is directly proportional to the rate of change of momentum produced
F = m× (v₂ - v₁)/(Δt)
The given parameters of the motion of the ball are;
The mass of the ball, m = 45 g = 0.045 kg
The initial velocity of the ball, v₁ = 0 m/s
The speed with which the ball was hit by the golfer, v₂ = 40 m/s
The duration of contact between the golf club and the ball, Δt = 3 ms = 0.003 seconds (s)
By Newton's law of motion, the average force, 'F', which the golf club exerts on the ball is therefore, given as follows;
F = 0.045 kg × (40 m/s - 0 m/s)/(0.003 s) = 600 N
The average force the golf club exerts on the ball = F = 600 N.
Answer:
the frequency of the oscillation is 1.5 Hz
Explanation:
Given;
mass of the spring, m = 1500 kg
extention of the spring, x = 5 mm = 5 x 10⁻³ m
mass of the driver = 68 kg
The weight of the driver is calculated as;
F = mg
F = 68 x 9.8 = 666.4 N
The spring constant, k, is calculated as;
k = F/m
k = (666.4 N) / (5 x 10⁻³ m)
k = 133,280 N/m
The angular speed of the spring is calculated;

The frequency of the oscillation is calculated as;
ω = 2πf
f = ω / 2π
f = (9.426) / (2π)
f = 1.5 Hz
Therefore, the frequency of the oscillation is 1.5 Hz
Explanation: Slowing Down (or Stopping) occurs when the force of kinetic friction is greater than that of the external force. This also follows Newton's first law of motion as there exists a net force on the object.
Answer:
The charges under study are of the same sign
The calculation of the electric field for each charge separately, there is no relationship between the charges
Explanation:
Let's start by writing the equation for the electric field
E = k q / r²
where q is the charge under analysis and r the distance from this charge to a positive test charge.
When analyzing the statement the student has some problems.
* The charges under study are of the same sign, it does not matter if positive or negative.
* The calculation of the electric field for each charge separately, there is no relationship between the charges for the calculation of the electric field.
* What is added is the interaction of the electric field with the positive test charge, in this case each field has the opposite direction to the other, so the vector sum gives zero
Answer:
For sound waves to travel, there is a requirement of medium and density of the medium is considered to be one of the factors on which the speed of sound depends. When the medium is dense, the molecules in the medium are closely packed which means that the sound travels faster.
Explanation: