Answer:
(a) 91 kg (2 s.f.) (b) 22 m
Explanation:
Since it is stated that a constant horizontal force is applied to the block of ice, we know that the block of ice travels with a constant acceleration and but not with a constant velocity.
(a)

Subsequently,

*Note that the equations used above assume constant acceleration is being applied to the system. However, in the case of non-uniform motion, these equations will no longer be valid and in turn, calculus will be used to analyze such motions.
(b) To find the final velocity of the ice block at the end of the first 5 seconds,

According to Newton's First Law which states objects will remain at rest
or in uniform motion (moving at constant velocity) unless acted upon by
an external force. Hence, the block of ice by the end of the first 5
seconds, experiences no acceleration (a = 0) but travels with a constant
velocity of 4.4
.

Therefore, the ice block traveled 22 m in the next 5 seconds after the
worker stops pushing it.
The answer to the correct number of significant figures is 6.774.
<h3>What is quotient?</h3>
When a number(big) divided smaller number, the answer obtained greater than zero is called a quotient.
Divide 143.6 ÷ 21.2
143.6/21.2 = 1436/212
=6.77358
The quotient is rounded to three significant figures after decimal
143.6 ÷ 21.2 = 6.774
Thus, the answer to the correct number of significant figures is 6.774
Learn more about quotient
brainly.com/question/27796160
#SPJ1
Answer:
W = (F1 - mg sin θ) L, W = -μ mg cos θ L
Explanation:
Let's use Newton's second law to find the friction force. In these problems the x axis is taken parallel to the plane and the y axis perpendicular to the plane
Y Axis
N -
=
N = W_{y}
X axis
F1 - fr - Wₓ = 0
fr = F1 - Wₓ
Let's use trigonometry to find the components of the weight
sin θ = Wₓ / W
cos θ = W_{y} / W
Wₓ = W sin θ
W_{y} = W cos θ
We substitute
fr = F1 - W sin θ
Work is defined by
W = F .dx
W = F dx cos θ
The friction force is parallel to the plane in the negative direction and the displacement is positive along the plane, so the Angle is 180º and the cos θ= -1
W = -fr x
W = (F1 - mg sin θ) L
Another way to calculate is
fr = μ N
fr = μ W cos θ
the work is
W = -μ mg cos θ L
Time taken by the package to reach the sea level= 13.7 s
height=h=925 m
initial velocity along vertical= vi=0
acceleration due to gravity=g=9.8 m/s^2
using the kinematic equation h= Vi*t + 1/2 gt^2
925=0(t)+1/2 (9.8)t^2
4.9 t^2=925
t= 13.7 s