Answer:large
Explanation:
As the temperature increases, materials with large coefficients of linear expansion increases a lot in size
I'm trying to make an electromagnet that's strength is constantly getting incremented by small amounts every second. I need to know, which would have a greater effect on the electromagnet's strength, amps or volts? (I know increasing the turns and/or density of the magnet wire will increase the strength, but I am looking for answers other than that particular one.)
Answer:
The magnitude of the force of friction equals the magnitude of my push
Explanation:
Since the crate moves at a constant speed, there is no net acceleration and thus, my push is balanced by the frictional force on the crate. So, the magnitude of the force of friction equals the magnitude of my push.
Let F = push and f = frictional force and f' = net force
F - f = f' since the crate moves at constant speed, acceleration is zero and thus f' = ma = m (0) = 0
So, F - f = 0
Thus, F = f
So, the magnitude of the force of friction equals the magnitude of my push.
Answer:
t = 4.21x10⁻⁷ s
Explanation:
The time (t) can be found using the angular velocity (ω):
<em>Where θ: is the angular displacement = π (since it moves halfway through a complete circle)</em>
We have:
<u>Where</u>:
<em>v: is the tangential speed </em>
<em>r: is the radius</em>
The radius can be found equaling the magnetic force with the centripetal force:

Where:
m: is the mass of the alpha particle = 6.64x10⁻²⁷ kg
q: is the charge of the alpha particle = 2*p (proton) = 2*1.6x10⁻¹⁹C
B: is the magnetic field = 0.155 T
Hence, the time is:

Therefore, the time that takes for an alpha particle to move halfway through a complete circle is 4.21x10⁻⁷ s.
I hope it helps you!