Explanation:
<u><em>Deviation</em><em> </em><em>:</em><em> </em></u><em> </em>
It means the difference between a expected value of a measurement or an observation vs the actual value.
<em><u>Incidence</u></em><em><u> </u></em><em><u>:</u></em>
A straight line, ray of light, etc.., hits a surface at a point.
Answer:
15.67 m/s
Explanation:
The ball has a projectile motion, with a horizontal uniform motion with constant speed and a vertical accelerated motion with constant acceleration g=9.8 m/s^2 downward.
Let's consider the vertical motion only first: the vertical distance covered by the ball, which is S=50 m, is given by

where t is the time of the fall. Substituting S=50 m and re-arranging the equation, we can find t:

Now we now that the ball must cover a distance of 50 meters horizontally during this time, in order to fall inside the carriage; therefore, the velocity of the carriage should be:

Answer:
Constant speed: yes
Constant velocity: no
Explanation:
Let's remind the definition of speed and velocity:
- Speed is a scalar quantity, which is equal to the ratio between the distance covered (regardless of the direction) and the time taken:

- Velocity is a vector quantity, so it has both a magnitude and a direction. The magnitude is equal to the rate between the displacement of the object and the time taken, while the direction is the same as the displacement.
In this problem, we notice that:
- The speed of the car remains constant, as it is 90 km/h
- However, its direction of motion changes while the car travels round the corner: this means that the direction of the velocity is also changing, therefore velocity is not constant.
Average Velocity= displacement/time Av=50/0.50 Av=100
Answer:
Surface currents are controlled by three factors: global winds, the Coriolis effect, and continental deflections. surface create surface currents in the ocean. Different winds cause currents to flow in different directions. objects from a straight path due to the Earth's rotation.
Explanation: