You will need 4 molecules of O2.
Answer:
13.85 kJ/°C
-14.89 kJ/g
Explanation:
<em>At constant volume, the heat of combustion of a particular compound, compound A, is − 3039.0 kJ/mol. When 1.697 g of compound A (molar mass = 101.67 g/mol) is burned in a bomb calorimeter, the temperature of the calorimeter (including its contents) rose by 3.661 °C. What is the heat capacity (calorimeter constant) of the calorimeter? </em>
<em />
The heat of combustion of A is − 3039.0 kJ/mol and its molar mass is 101.67 g/mol. The heat released by the combustion of 1.697g of A is:

According to the law of conservation of energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qcomb + Qcal = 0
Qcal = -Qcomb = -(-50.72 kJ) = 50.72 kJ
The heat capacity (C) of the calorimeter can be calculated using the following expression.
Qcal = C . ΔT
where,
ΔT is the change in the temperature
Qcal = C . ΔT
50.72 kJ = C . 3.661 °C
C = 13.85 kJ/°C
<em>Suppose a 3.767 g sample of a second compound, compound B, is combusted in the same calorimeter, and the temperature rises from 23.23°C to 27.28 ∘ C. What is the heat of combustion per gram of compound B?</em>
Qcomb = -Qcal = -C . ΔT = - (13.85 kJ/°C) . (27.28°C - 23.23°C) = -56.09 kJ
The heat of combustion per gram of B is:

Answer:
The scaling factor is 5.
Explanation:
Hello there!
In this case, since the scaling factor is defined as the ratio of the molar mass of the molecular formula (complete) to the empirical formula (simplified), it is possible to compute it for the empirical formula of CH2O whose molar mass is 30 g/mol (12+2+16) as shown below:

Therefore, we can also infer that the molecular formula would be:

Best regards!
I'd say b, but i'm not 100 percent sure.<span />