Y - yo = Vo*t - g * (t^2) / 2
Vo = - 9.0 m/s
t = 0.50 s
=> y - yo = -9.0 m/s * 0.5 s - 9.8 m/s^2 * (0.5s)^2 / 2 = - 4.5m - 1.225m = - 5.725 m.
Answer: option c) - 5.7
All that business about the crane and the rope and the falling
is only there to confuse us.
The piano ended up 5 meters above the ground.
Potential energy = (mass) (gravity) (height)
= (200 kg) (9.81 m/s²) (5 m)
= (200 · 9.81 · 5) (kg-m²/s²)
= 9,810 joules .
C and c infeijnveirnvinefine
The magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
The given parameters;
- <em>initial temperature of metals, = </em>
<em /> - <em>initial temperature of water, = </em>
<em> </em> - <em>specific heat capacity of copper, </em>
<em> = 0.385 J/g.K</em> - <em>specific heat capacity of aluminum, </em>
= 0.9 J/g.K - <em>both metals have equal mass = m</em>
The quantity of heat transferred by each metal is calculated as follows;
Q = mcΔt
<em>For</em><em> copper metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>copper metal</em>;

<em>For </em><em>aluminum metal</em><em>, the quantity of heat transferred is calculated as</em>;

<em>The </em><em>change</em><em> in </em><em>heat </em><em>energy for </em><em>aluminum metal </em><em>;</em>

Thus, we can conclude that the magnitudes of his q and ∆H for the copper trial would be lower than the aluminum trial.
Learn more here:brainly.com/question/15345295
Answer:
where is graph...............