Answer:
145 m
Explanation:
Given:
Wavelength (λ) = 2.9 m
we know,
c = f × λ
where,
c = speed of light ; 3.0 x 10⁸ m/s
f = frequency
thus,

substituting the values in the equation we get,

f = 1.03 x 10⁸Hz
Now,
The time period (T) = 
or
T =
= 9.6 x 10⁻⁹ seconds
thus,
the time interval of one pulse = 100T = 9.6 x 10⁻⁷ s
Time between pulses = (100T×10) = 9.6 x 10⁻⁶ s
Now,
For radar to detect the object the pulse must hit the object and come back to the detector.
Hence, the shortest distance will be half the distance travelled by the pulse back and forth.
Distance = speed × time = 3 x 10^8 m/s × 9.6 x 10⁻⁷ s) = 290 m {Back and forth}
Thus, the minimum distance to target =
= 145 m
Answer:
Momentum of block B after collision =
Explanation:
Given
Before collision:
Momentum of block A =
= 
Momentum of block B =
= 
After collision:
Momentum of block A =
= 
Applying law of conservation of momentum to find momentum of block B after collision
.

Plugging in the given values and simplifying.


Adding 200 to both sides.


∴ 
Momentum of block B after collision =
Answer:
The smallest film thickness is 117 nm.
Explanation:
Light interference on thin films can be constructive or destructive. Constructive interference is dependent on the film thickness and the refractive index of the medium.
For the first interference (surface nearest to viewer), the minimum thickness can be expressed as:

where n is the refractive index of the bubble film.
Therefore,


∴ 

Answer:
the magnitude of Vpg = 493.711 km/h
Explanation:
given data
speed Vpg = 560 km/h
speed Vwg = 80 km/h
solution
we get here magnitude of the plane velocity w.r.t. ground is
we know that the Vpg = Vpw + Vwg .....................1
writing the component of the velocity that is
Vpw = (0 km/h î - 560 km/h j )
Vwg = (80 cos 45 km/h î + 80 sin 45 km/h j)
adding these
Vpg = (0+80 cos 45 km/h ) î + ( -560 + 80 sin 45 km/h j)i
Vpg = (42.025 ) î (-491.92 km/h)j
now we take magnitude
the magnitude of Vpg = 
the magnitude of Vpg = 493.711 km/h