Answer
given,
time = 10 s
ship's speed = 5 Km/h
F = m a
a is the acceleration and m is mass.
In the first case
F₁=m x a₁
where a₁ = difference in velocity / time
F₁ is constant acceleration is also a constant.
Δv₁ = 5 x 0.278
Δv₁ = 1.39 m/s

a₁ = 0.139 m/s²
F₂ =m x a₂
F₃ = F₂ + F₁
Δv₃ = 19 x 0.278
Δv₃ = 5.282 m/s
a₃=Δv₂ / t

a₃ = 0.5282 m²/s
m a₃=m a₁ + m a₂
a₃ = a₂ + a₁
0.5282 = a₂ + 0.139
a₂=0.3892 m²/s
F₂ = m x 0.3892...........(1)
F₁ = m x 0.139...............(2)
F₂/F₁
ratio = 
ratio = 2.8
Answer:
(a) Heat transfer to the environment is: 1 MJ and (b) The efficiency of the engine is: 41.5%
Explanation:
Using the formula that relate heat and work from the thermodynamic theory as:
solving to Q_out we get:
this is the heat out of the cycle or engine, so it will be heat transfer to the environment. The thermal efficiency of a Carnot cycle gives us:
where T_Low is the lowest cycle temperature and T_High the highest, we need to remember that a Carnot cycle depends only on the absolute temperatures, if you remember the convertion of K=°C+273.15 so T_Low=150+273.15=423.15 K and T_High=450+273.15=723.15K and replacing the values in the equation we get:
Given the the current flowing in the circuit and the elapsed time, the charge that passes through the LED is 1260 Coulombs.
<h3>What is Current?</h3>
Current is simply the rate of flow of charged particles i.e electrons caused by EMF or voltage.
If a charge passes through the cross-section of a conductor in a given time, the current I is expressed as;
I = Q/t
Where Q is the charge and t is time elapsed.
Given the data in the question;
- Time elapsed t = 1hr = 3600s
- Current I = 350mA = 0.35A
We substitute our given values into the expression above to determine the charge.
I = Q/t
Q = I × t
Q = 0.35A × 3600s
Q = 1260C
Therefore, given the the current flowing in the circuit and the elapsed time, the charge that passes through the LED is 1260 Coulombs.
Learn more about current here: brainly.com/question/3192435
#SPJ1
Answer:
9.36*10^11 m
Explanation
Orbital velocity v=√{(G*M)/R},
G = gravitational constant =6.67*10^-11 m³ kg⁻¹ s⁻²,
M = mass of the star
R =distance from the planet to the star.
v=ωR, with ω as the angular velocity and R the radius
ωR=√{(G*M)/R},
ω=2π/T,
T = orbital period of the planet
To get R we write the formula by making R the subject of the equation
(2π/T)*R=√{(G*M)/R}
{(2π/T)*R}²=[√{(G*M)/R}]²,
(4π²/T²)*R²=(G*M)/R,
(4π²/T²)*R³=G*M,
R³=(G*M*T²)/4π²,
R=∛{(G*M*T²)/4π²},
Substitute values
R=9.36*10^11 m