Answer:
Moment of the force is 20 N-m.
Explanation:
Given:
Force exerted by the person is, 
Distance of application of force from the point about which moment is needed is, 
Now, we know that, moment of a force 'F' about a point at a perpendicular distance of 'd' from the same point is given as the product of the force and the perpendicular distance.
Therefore, the moment of the force about the end of the claw hammer is given as:

Hence, the moment of the force exerted by the person about the end of the claw hammer is 20 N-m.
Answer:
(a) 17.37 rad/s^2
(b) 12479
Explanation:
t = 95 s, r = 6 cm = 0.06 m, v = 99 m/s, w0 = 0
w = v / r = 99 / 0.06 = 1650 rad/s
(a) Use first equation of motion for rotational motion
w = w0 + α t
1650 = 0 + α x 95
α = 17.37 rad/s^2
(b) Let θ be the angular displacement
Use third equation of motion for rotational motion
w^2 = w0^2 + 2 α θ
1650^2 = 0 + 2 x 17.37 x θ
θ = 78367.87 rad
number of revolutions, n = θ / 2 π
n = 78367.87 / ( 2 x 3.14)
n = 12478.9 ≈ 12479
Answer:
that is going at a constant rate
Explanation:
Yes, C is correct. It self explains itself as we know light travels through a vacuum ( doesn't need a medium) and light is a type of electromagnetic wave.
When an object's atoms move faster, its thermal energy increases and the object becomes warmer.