Answer:
45.8
Explanation:
becuse 9.8+36=45.8 simple
Answer:
Explanation:
Given
mass of sphere 
diameter of sphere 
radius 

friction will provide resisting torque so
where 







(b)time taken to decrease its rotational speed by 



Answer:
Explanation:
a ) The angle required = angle of repose = θ
Tanθ = .81
θ = 39⁰
b ) when angle of incline θ = 44
Net force on the block = mg sinθ - μ mg cosθ where μ is coefficient of kinetic friction
acceleration = gsinθ - μ g cosθ
= 9.8 ( sin44 - μ cos44 )
= 9.8 ( .695 - .69 x .72 )
= 9.8 ( .695 - .497 )
= 1.94 m /s²
<span>THIS IS A GAS PHASE REACTION AND WE ARE GIVE PARTIAL PRESSURES . I WRITE IN TERMS OF P RATHER THAN CONCENTRATION :
lnPso2cl12=-kt+lnPso2cl1
initial partial pressure Pso2cl12 the rate constant k and the time t
lnPso2cl12=(4.5*10-2*s-1)*65*s+ln (375)
so lnPso2cl12=3.002
we take the base e antilog:
lnPso2cl12=e3.002
Pso2cl12=20 torr
we use the integrated first order rate
lnPso2cl12=3.002=k*t+ lnPso2cl12=3.002
we use the same rate constant and initial pressure
k=4.5*10-2*s-1
Pso2cl12=375
Pso2cl12=1* so2cl12
Pso2cl12=37.5 torr
subtract in Pso2cl12 grom both side
lnPso2cl12- lnPso2cl12=-kt
ln(x)-ln(y)=ln (x/y)
ln (Pso2cl12/Pso2cl20)=-kt
we get t
-1/k*ln(Pso2cl12/Pso2cl20)=t
t=51 s</span>