Answer:
The hydrogen ion concentration in a solution, [H+], in mol L-1, can be calculated if the pH of the solution is known.
pH is defined as the negative logarithm (to base 10) of the hydrogen ion concentration in mol L-1 pH = -log10[H+] ...
[H+] in mol L-1 can be calculated using the equation (formula): [H+] = 10-pH
The unit pg stands for pictogram. It is one-trillionth of a gram. Because of the very small mass, it is expressed in the prefix form of the base units for convenience. Now, the mass of cofactor a is 41.5 pg per cell. Since there are a total of 105 cells, the total mass would be:
Total mass = 105 cells * 41.5 pg/cell = 4,357.5 pg
Answer:
41.16 moles of H2O
Explanation:
Ratio for the products-reactants is 1:6, so 1 mol of glucose is produced when plants use 6 moles of water.
Then, let's make a rule of three:
1 mol of glucose is produce by using 6 moles of water
6.86 moles of glucose are produced by the use of (6 . 6.86)/1 = 41.16 moles of H2O
Answer:
Hey there!
Auto-ionization of water is an ionization reaction in pure water or in another aqueous solution, in which a water molecule, H2O, loses the nucleus of one of its hydrogen atoms to become a hydroxide ion, OH−.
Let me know if this helps :)
Explanation:
Reversible reactions that happen in a closed system eventually reach equilibrium. At equilibrium, the concentrations of reactants and products do not change. But the forward and reverse reactions have not stopped - they are still going on, and at the same rate as each other.