Answer: It will take 29 years for a 10.0-gram sample of strontium-90 to decay to 5.00 grams
Explanation:
Radioactive decay process is a type of process in which a less stable nuclei decomposes to a stable nuclei by releasing some radiations or particles like alpha, beta particles or gamma-radiations. The radioactive decay follows first order kinetics.
Half life is the amount of time taken by a radioactive material to decay to half of its original value.
Half life is represented by 

= rate constant
Given : Strontium-90 decreases in mass by one-half every 29 years , that is half life of Strontium-90 is 29 years.
As half life is independent of initial concentration, it will take 29 years for a 10.0-gram sample of strontium-90 to decay to 5.00 grams as the amount gets half.
Answer:
Π = iMRT ½
Explanation:
111 g
= 0.033 mol
0.033 mol CaCl2
0.09632 kg solvent
= 0.0344 m
13.7 g x 1 mol C3H7OH
60.10 g
0.5 L
(0.0821 L.atm/K.mol) (300.15K
Answer is: 3. Water and carbon dioxide should both be moved to the products side, and glucose and oxygen should be moved to the reactants side.
Balanced chemical reaction for cellular respiration (convert biochemical energy):
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + energy, or:
glucose + oxygen → carbon dioxide + water + energy.
This reaction is exothermic (energy is released).
Food code is like sort of a guide to ensure that the food is presented according decent standards, unadulterated and correctly presented to the customer.
It is published every four years by the " U.S Food and Drug Administration".