Answer:
Explanation:
Height of building
H = 6m
Horizontal speed of first balloon
U1x = 2m/s
Second ballot is thrown straight downward at a speed of
U2y = 2m/s
Time each gallon hits the ground
Balloon 1.
Using equation of free fall
H = Uoy•t + ½gt²
Uox = 0 since the body does not have vertical component of velocity
6 = ½ × 9.8t²
6 = 4.9t²
t² = 6 / 4.9
t² = 1.224
t = √1.224
t = 1.11 seconds
For second balloon
H = Uoy•t + ½gt²
6 = 2t + ½ × 9.8t²
6 = 2t + 4.9t²
4.9t² + 2t —6 = 0
Using formula method to solve the quadratic equation
Check attachment
From the solution we see that,
t = 0.9211 and t = -1.329
We will discard the negative value of time since time can't be negative here
So the second balloon get to the ground after t ≈ 0.92 seconds
Conclusion
The water ballon that was thrown straight down at 2.00 m/s hits the ground first by 1.11 s - 0.92s = 0.19 s.
Answer:
Isotope it will have a different number of neutrons than normal
Answer:
True
Explanation:
The image produced a convex mirror is always virtual irrespective of location. The size of the image is always smaller than the object. In a plane mirror the distance of the object and the distance of the image is same. But in a convex the image distance is always less than the object distance.
So, this statement is true.
Answer: Boyle found that when the pressure of a gas at a constant temperature is increased, the volume of the gas decreases. When the pressure of a gas is decreased, the volume increases. This relationship between pressure and volume it's called Boyle's law.
Explanation: In the 1600s, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of a gas at a constant temperature is increased, the volume of the gas decreases. When the pressure of a gas is decreased, the volume increases. This relationship between pressure and volume it's called Boyle's law.