Answer:
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
Explanation:
Given that
Yield strength ,Sy= 240 MPa
Tensile strength = 310 MPa
Elastic modulus ,E= 110 GPa
L=380 mm
ΔL = 1.9 mm
Lets find strain:
Case 1 :
Strain due to elongation (testing)
ε = ΔL/L
ε = 1.9/380
ε = 0.005
Case 2 :
Strain due to yielding


ε '=0.0021
Here Strain due to testing is greater than the strain due to yielding that is why computation of load is not possible.
For computation of load strain due to testing should be less than the strain due to yielding.
Answer:
<u>The correct answer is 0.556 Watts</u>
Explanation:
The computer monitor uses 200 Watts of power in an hour, that is the standard measure.
If we want to know, how much energy the computer monitor uses in one second, we will have to divide both sides of the equation into 3,600.
1 hour = 60 minutes = 3,600 seconds (60 x 60)
Energy per second = 200/3600
Energy per second = 0.0556 Watts
Therefore to calculate how much energy is used in 10 seconds, we do this:
Energy per second x 10
<u>0.0556 x 10 = 0.556 Watts</u>
<u>The computer monitor uses 0.556 Watts in 10 seconds</u>
<span>a. KE in electron volts is 1020 eV.
b. KE in Joules is e(1020) = (1.6022E-19)(1020) = 1.634E-16
c. KE = (1/2)mv^2, so v = sqrt[2*KE/m] = 18.94E6 m/s
note: m is the mass of an electron = 9.109e-31 kg
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
Answer:
I = 0.2 A
Explanation:
Lamp is rated at 300 mA
I_lamp = 0.3 A
Voltage is; V = 3V
Thus; Resistance is given by;
R = V/I
R = 3/0.3
R = 10 ohms
Now, since the ammeter of 5 ohms is connected in series with the lamp. Thus equivalent resistance;
R_eq = 10 + 5
R_eq = 15 ohms
Ammeter current will be;
I = V/R_eq
I = 3/15
I = 0.2 A