Molarity is moles divided by liters so do .732 divided by .975 liters.
<span>The half-life of Carbon 14 and radionuclides are used to estimate the absolute (versus relative) age of pre-history items </span>
Answer:
Me and my friends were going to do a science experiment. Jonny’s job was to make the HYPOTHESIS. He said the “ If we mix baking soda and vinegar together, the TEMPERATURE will go down.”
So then Molly mixed the baking soda and vinegar together and checked the TEMPERATURE. We all OBSERVED as the thermometer’s TEMPERATURE went down. “ your THEORY/ HYPOTHESIS was correct!” Exclaimed Molly.
Then the whole science GROUP let out with a cheer! And wrote the information down on their EXPERIMENTAL info chart. They took a microscope and looked at the mixture because they wanted to the the little PARTICLES in the mixture. Lily CONTROLED the microscope she zoomed in and out to see the particles.
Explanation:
i hope this helps:)
The question above is incomplete, the full question is given below:
What additional test would be needed to establish the exact position of hydrogen in the activity series of the following elements: magnesium, zinc, lead, copper and silver.
ANSWER
The position of hydrogen on a reactivity series can be determined by its ability to displace oxygen from the oxide of the metal concerned. If hydrogen is more reactive than a metal, it will displace oxygen from the metal oxide and reduce the metal oxide to its metal. If the metal is more reactive than hydrogen, hydrogen will not be able to reduce the metal oxide to its metal.
Answer:
62.5 moles of O₂.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2C₈H₁₈ + 25O₂ —> 16CO₂ + 18H₂O
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Finally, we shall determine the number of mole of O₂ needed to react with 5 moles of C₈H₁₈. This can be obtained as shown below:
From the balanced equation above,
2 moles of C₈H₁₈ reacted with 25 moles of O₂.
Therefore, 5 moles of C₈H₁₈ will react with = (5 × 25) / 2 = 62.5 moles of O₂.
Thus, 62.5 moles of O₂ is needed for the reaction.