Explanation:
The kinetic energy is said to be possessed due to the motion of the object. An object at rest will have zero kinetic energy and if it is in motion it will have some kinetic energy. The mathematical expression for kinetic energy is given by :
...........(1)
Where
m is the mass of the object
v is the velocity of object
It is clear form expression (1) that the kinetic energy of the object is directly proportional to the mass and velocity of an object.
So, the hypothesis for the mass and kinetic energy can be written as " when the mass of the object increases, its kinetic energy also increases because there exists a direct relationship between the mass and the kinetic energy of the object".
Answer:
allows for better thermal equilibrium
Explanation:
Due to the cone shape, most of the liquid will be closer to the bottom than the top. The large surface area of the bottom allows for faster heating.
Answer:
39.81 N
Explanation:
I attached an image of the free body diagrams I drew of crate #1 and #2.
Using these diagram, we can set up a system of equations for the sum of forces in the x and y direction.
∑Fₓ = maₓ
∑Fᵧ = maᵧ
Let's start with the free body diagram for crate #2. Let's set the positive direction on top and the negative direction on the bottom. We can see that the forces acting on crate #2 are in the y-direction, so let's use Newton's 2nd Law to write this equation:
- ∑Fᵧ = maᵧ
- T₁ - m₂g = m₂aᵧ
Note that the tension and acceleration are constant throughout the system since the string has a negligible mass. Therefore, we don't really need to write the subscripts under T and a, but I am doing so just so there is no confusion.
Let's solve for T in the equation...
- T₁ = m₂aᵧ + m₂g
- T₁ = m₂(a + g)
We'll come back to this equation later. Now let's go to the free body diagram for crate #1.
We want to solve for the forces in the x-direction now. Let's set the leftwards direction to be positive and the rightwards direction to be negative.
The normal force is equal to the x-component of the force of gravity.
- (F_n · μ_k) - m₁g sinΘ = m₁aₓ
- (F_g cosΘ · μ_k) - m₁g sinΘ = m₁aₓ
- [m₁g cos(30) · 0.28] - [m₁g sin(30)] = m₁aₓ
- [(6)(9.8)cos(30) · 0.28] - [(6)(9.8)sin(30)] = (6)aₓ
- [2.539595871] - [-58.0962595] = 6aₓ
- 60.63585537 = 6aₓ
- aₓ = 10.1059759 m/s²
Now let's go back to this equation:
We have 3 known variables and we can solve for the tension force.
- T = 2(10.1059759 + 9.8)
- T = 2(19.9059759)
- T = 39.8119518 N
The tension force is the same throughout the string, therefore, the tension in the string connecting M2 and M3 is 39.81 N.
Answer:
Distance = 70 meters
Explanation:
<u>Given the following data;</u>
Speed = 90 km/h
Time = 2.8 seconds
<u>Conversion:</u>
90 km/h to meters per seconds = 90 * 1000/3600 = 90000/3600 = 25 m/s
To find the distance covered during this inattentive period;
Speed can be defined as distance covered per unit time. Speed is a scalar quantity and as such it has magnitude but no direction.
Mathematically, speed is given by the formula;
Making distance the subject of formula, we have;

Substituting into the above formula, we have;

<em>Distance = 70 meters</em>
Answer:
Explanation:
Let mass of bullet = m1 = 28g= 0.028 kg
mass of pendulum = m2 = 3.1 kg