Answer:
Time = 0.58 seconds
Explanation:
Given the following data;
Initial momentum = 3 kgm/s
Final momentum = 10 kgm/s
Force = 12 N
To find the time required for the change in momentum;
First of all, we would determine the change in momentum.


Change in momentum = 7 kgm/s
Now, we can find the time required;
Note: the impulse of an object is equal to the change in momentum experienced by the object.
Mathematically, impulse (change in momentum) is given by the formula;

Making "time" the subject of formula, we have;

Substituting into the formula, we have;

Time = 0.58 seconds
Answer:
377 m
Explanation:
number of turns, N = 65
θ = 36°
B1 = 200 micro Tesla
B2 = 600 micro tesla
t = 0.4 s
induced emf, e = 80 mV
Let a be the side of the square coil.



a = 1.45 m
Total length of the wire, L = N x 4a = 65 x 4 x 1.45 = 377 m
Thus, the length of the wire is 377 m.
The type of wetland u are most likely to find carnivorous plant would be a bog.
Answer:
v=0.60 m/s
Explanation:
Given that
m ₁= 390 kg ,u ₁= 0.5 m/s
m₂ = 250 kg ,u₂ = 0.76 m/s
As we know that if there is no any external force on the system the total linear momentum of the system will be conserve.
Pi = Pf
m ₁u ₁+m₂u₂ = (m₂ + m ₁ ) v
Now putting the values in the above equation
390 x 0.5 + 250 x 0.76 = (390 + 250 ) v

v=0.60 m/s
Therefore the velocity of the system will be 0.6 m/s.
Answer:
(D. Gestalt psychology) , is the school of psychology that believes perception is more than the sum of its parts, it involves a whole pattern
.
This type of school of psychology studied how all components of sensations are assembled into one's perception
.
hope this helps :)