It's the Methyl Orange.
at about 4.4 pH, it changes from red to Yellow, to indicate an acid solution.
This pH indicator is normally used in titration of acids.
Hope this Helps :)
Answer:
s = d÷ t
Explanation:
Where s means speed, d means distance and t means time
Answer:
- <em>Hydration number:</em> 4
Explanation:
<u>1) Mass of water in the hydrated compound</u>
Mass of water = Mass of the hydrated sample - mass of the dehydrated compound
Mass of water = 30.7 g - 22.9 g = 7.8 g
<u>2) Number of moles of water</u>
- Number of moles = mass in grams / molar mass
- molar mass of H₂O = 2×1.008 g/mol + 15.999 g*mol = 18.015 g/mol
- Number of moles of H₂O = 7.9 g / 18.015 g/mol = 0.439 mol
<u>3) Number of moles of Strontium nitrate dehydrated, Sr (NO₃)₂</u>
- The mass of strontium nitrate dehydrated is the constant mass obtained after heating = 22.9 g
- Molar mass of Sr (NO₃)₂ : 211.63 g/mol (you can obtain it from a internet or calculate using the atomic masses of each element from a periodic table).
- Number of moles of Sr (NO₃)₂ = 22.9 g / 211.63 g/mol = 0.108 mol
<u>4) Ratio</u>
- 0.439 mol H₂O / 0.108 mol Sr(NO₃)₂ ≈ 4 mol H₂O : 1 mol Sr (NO₃)₂
Which means that the hydration number is 4.
Answer:
0.4 moles
Explanation:
To convert between moles and grams you need the molar mass of the compound. The molar mass of of CaCO3 is 100.09g/mol. You use that as the unit converter.
40gCaCO3* 1mol CaCO3/100.09gCaCO3 = 0.399640 mol CaCO3
This rounds to 0.4 moles CaCO3
Answer: The correct answer is option (A).
Explanation:
Polar molecules are molecules in which formation of partial charges takes place due to which dipole moment gets created in a molecule. Molecules with polar bonds that s bond with partly ionic character. And water is of the example of polar molecule.
Electronegative oxygen atom in water molecule attracts the electron bond pair towards itself which generates partial negative charge on oxygen atom and partial positive charge on both hydrogen atoms.
Where as water has higher value surface tension due to strong intermolecular association of the water molecule due to presence of hydrogen bonding.And it is more denser is liquid state than in its solid state.
Hence,the correct answer is option (A).