I think it is C. I hope I helped.
Answer:
copying another writer's work with no attempt to acknowledge that the material was found in external source is considered as a direct plagiarism.
Answer:
h = 16.67m
Explanation:
If the kinetic energy of the cylinder is 510J:


Where the inertia is given by:

Replacing this value:

Speed of the block will therefore be:

By conservation of energy:
Eo = Ef
Eo = 0

So,

Solving for h we get:
h=16.67m
Answer:
109.32 N/m
Explanation:
Given that
Mass of the hung object, m = 8 kg
Period of oscillation of object, T = 1.7 s
Force constant, k = ?
Recall that the period of oscillation of a Simple Harmonic Motion is given as
T = 2π √(m/k), where
T = period of oscillation
m = mass of object and
k = force constant if the spring
Since we are looking for the force constant, if we make "k" the subject of the formula, we have
k = 4π²m / T², now we go ahead to substitute our given values from the question
k = (4 * π² * 8) / 1.7²
k = 315.91 / 2.89
k = 109.32 N/m
Therefore, the force constant of the spring is 109.32 N/m
The sinking of cold air creates regions of high pressure and this air travels to lower pressure regions produced by the rising motion of warm air. This process results in air circulation.