<span>b. It ensures that measurements are taken from two points
that are very far apart.
Measurements taken six months apart are the farthest apart
that an astronomer can ever get ... they're on opposite sides
of the Earth's orbit !</span>
Answer:
Explanation:
The standard equation of the sinusoidal wave in one dimension is given by

Here, A be the amplitude of the wave
λ be the wavelength of the wave
v be the velocity of the wave
Φ be the phase angle
x be the position of the wave
t be the time
this wave is travelling along positive direction of X axis
The frequency of wave is f which relates with velocity and wavelength as given below
v = f x λ
The relation between the time period and the frequency is
f = 1 / T.
Answer:
b. 0.6m/s, 0.7m/s, 0.61m/s, 0.62m/s
Explanation:
Precision of a measurement is the closeness of the experimental values to one another. Hence, experimental measurements are said to be precise if they are close to each other irrespective of how close they are to the accepted value. Precision can be determined by finding the range of each experimental value. The measurement with the LOWEST RANGE represents the MOST PRECISE.
Note: Range is the highest value - lowest value
Set A: 1.5 - 0.8 = 0.7
Set B: 0.7 - 0.6 = 0.1
Set C: 2.4 - 2.0 = 0.4
Set D: 3.1 - 2.9 = 0.2
Set B has the lowest range (0.1), hence, represent the most precise value.
Old Grandpy!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!