Li(s) (answer A)
Li is strongest reducing agent because of the lowest standard reduction potential. when something is oxidized, it reduces another substance, becoming a reducing.Hence Lithium is strongest reducing agent. Reducing agent is stronger when it has a more positive oxidation potential.
LIKE DISSOLVES LIKE. Since Ccl4 is non-polar, it'll be soluble in any non-polar solvent. Hope this helps you!
There are several differences between<span> a </span>physical and chemical change<span> in matter or substances. A </span>physical change<span> in a substance doesn't </span>change<span> what the substance is. In a </span>chemical change<span> where there is a </span>chemical<span> reaction, a new substance is formed and energy is either given off or absorbed.</span>
Answer:
Divide the mass of your anhydrous (heated) salt sample by the molar mass of the anhydrous compound to get the number of moles of compound present. In our example, 16 grams / 160 grams per mole = 0.1 moles. Divide the mass of water lost when you heated the salt by the molar mass of water, roughly 18 grams per mole.In order to determine the formula of the hydrate, [Anhydrous Solid⋅xH2O], the number of moles of water per mole of anhydrous solid (x) will be calculated by dividing the number of moles of water by the number of moles of the anhydrous solid (Equation 2.12. 6).
Answer:
ΔH°rxn = - 433.1 KJ/mol
Explanation:
- CH4(g) + 4Cl2(g) → CCl4(g) + 4HCl(g)
⇒ ΔH°rxn = 4ΔH°HCl(g) + ΔH°CCl4(g) - 4ΔH°Cl2(g) - ΔH°CH4(g)
∴ ΔH°Cl2(g) = 0 KJ/mol.....pure element in its reference state
∴ ΔH°CCl4(g) = - 138.7 KJ/mol
∴ ΔH°HCl(g) = - 92.3 KJ/mol
∴ ΔH°CH4(g) = - 74.8 KJ/mol
⇒ ΔH°rxn = 4(- 92.3 KJ/mol) + (- 138.7 KJ/mol) - 4(0 KJ/mol) - (- 74.8 KJ/mol)
⇒ ΔH°rxn = - 369.2 KJ/mol - 138.7 KJ/mol - 0 KJ/mol + 74.8 KJ/mol
⇒ ΔH°rxn = - 433.1 KJ/mol