Answer:
1.) 28.0 grams of oxygen28 grams (1 mole/16 grams per mole)=1.75 moles oxygen2.)5.0 moles of Iron5 moles(55.845 grams/1 mole)=279.225 grams Iron3.) 452 grams Argon452 grams(1 mole/39.948 grams)=11.315 moles Argon4.) 16.5 moles Hydrogen16.5 moles(1.01 grams/1 mole)=16.665 grams Hydrogen
Explanation:
The third answer is the one you want. You have to have an adjustable density. All other things being equal, if the tanks you use for holding just water when filled with water will let the sub sink, because the sub is made of a dense metal like iron or steel.
If on the other hand you fill these tanks with air, the net density will be below one and the sub will rise.
Answer:
The two molecules of acetyl-CoA that are produced from a molecule of glucose goes through two turn in the citric acid cycle, one for each molecule of acetyl-CoA.
Explanation:
Glycolysis the process by which a molecule of glucose is broken down in a series of steps to yield two molecules of pyruvate. The overall equation for the reactions of glycolsis is given below:
Glucose + 2NAD+ ----> 2 Pyruvate + 2NADH + 2H⁺
Each of the two pyruvate molecules produced from glucose breakdown is further oxidized to two molecules of acetyl-CoA and CO₂ each.
2 Pyruvate ----> 2 AcetylCoA + 2CO₂
Each of the acetyl-CoA molecule then enters the citric acid cycle for its oxidation. In each turn of the cycle, one acetyl group enters as acetyl-CoA and two molecules of CO₂ leave.
Protons: charge +1, have a mass of 1 and are found in the nucleus
Neutrons: charge 0, have a mass of 1 and are found in the nucleus
Electrons: charge -1, have a mass of 1/840 and are found on the outside of the nucleus
hope that helps
Answer:
The answer to your question is letter D. 2.02 g
Explanation:
Data
moles of Ne = 0.100
atomic mass of Neon = 20.18 g
Process
1.- Use proportions to find the answer
20.18 g of Ne ------------------ 1 mol of Ne
x ------------------ 0.1 moles
x = (0.1 x 20.18)/1
x = 2.018
2.- Consider the significant figures
0.100 has three significant figures so the answer must be 2.02 g