Answer:
Q = 60192 j
Explanation:
Given data:
Volume of water = 0.45 L
Initial temperature = 23°C
Final temperature = 55°C
Amount of heat absorbed = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55°C - 23°C
ΔT = 32°C
one L = 1000 g
0.45 × 1000 = 450 g
Specific heat capacity of water is 4.18 j/g°C
Q = m.c. ΔT
Q = 450 g. 4.18 j/g°C. 32°C
Q = 60192 j
The density of the rectangular block in g/mL is 7.0.
<u>Given the following data:</u>
- Mass of block = 22.8 gra1.94 kg
- Length of block = 3.21 cm
- Height of block = 1.84 in.
To find the density of the block in g/mL:
First of all, we would determine the volume of the rectangular block by using the following formula:
× ×
<u>Conversion:</u>
1 in = 2.54 cm
5.83 in = X cm
Cross-multiplying, we have:
× ×
Volume = 277.16 cubic centimeters.
<u>Note</u>: Milliliter (mL) is the same as cubic centimeters.
1000 grams = 1 kg
Y grams = 1.94 kg
Cross-multiplying, we have:
Y = 1940 grams
Now, we can find the density:
<em>Density </em><em>= 7</em><em>.0 g/mL</em>
Therefore, the density of the rectangular block in g/mL is 7.0.
Read more: brainly.com/question/18320053
= k
<u>Explanation:</u>
The relation between volume, V of gas and Temperature, T of a gas is related by Charles Law.
This law states that the volume of a given amount of gas held at a constant pressure is directly proportional to the Kelvin temperature
Thus,
= k
where k is a constant
Therefore,
= = ...
This shows, as the volume of a gas goes up, the temperature also goes up and vice-versa.
Answer:
Iodine, Silicon, Copper.
Explanation:
Iodine is an insulator, which doesn't conduct electricity. Silicon is a semiconductor. Copper is a conductor.
Answer: the 1st one is B, 2 is A, 3 is A, 4 is a or D for this one, 5 is c, 6 is b, 7 is b, 8 is d, 9 is a, 10 is b those are my best guess and if that did work I'm sorry I didn't help you and take care also have a great day.