Answer:
0.164541341 g H2
Explanation:
1) Convert grams to moles by dividing by RMM of Magnesium (24.31g).
2g Mg * (1 mol Mg / 24.31 g Mg) = 0.082270671 mol of Mg
2) Use the balanced equation's ratio of 1 mol Mg: 1 mol H2.
0.082270671 mol of Mg = 0.082270671 mol of H2
3) Convert the mol of H2 back into grams by multiplying by H2's RMM (2 g).
0.082270671 mol of H2 * 2 g H2 = 0.164541341 g H2
* Answer can be rounded to your liking *
Answer:
0.500 mol/dm³
Explanation:
Using the formula below;
CaVa = CbVb
Where;
Ca = concentration of acid (mol/dm³)
Cb = concentration of base (mol/dm³)
Va = volume of acid (cm³)
Vb = volume of base (cm³)
In accordance to the information provided in this question is;
Va = 5cm³
Vb = 250 cm³
Ca = 12 mol/dm³
Cb = ?
Using CaVa = CbVb
12 × 5 = Cb × 250
60 = 120Cb
Cb = 60/120
Cb = 0.500 mol/dm³
Hey there!:
Number of moles = ( number of atoms / 6.023*10²³ atoms )
given number of atoms = 5.03*10²⁴
Therefore:
Number of moles B = 5.03*10²⁴ / 6.023*10²³
Number of moles B = 8.35 moles
Hope that helps!
The electron group arrangement of PH₃ is tetrahedral. The molecular shape is a Trigonal pyramid, and the bond angle is 93°.
<h3>What is the bond angle?</h3>
The angle between the atoms in a compound is known as the bond angle. The degree of the binding angle is specified. There is also the bond length. It is the separation between the two atoms' nuclei.
The bond angle between the atoms of phosphine is 93°. It has one lone pair. The central atom is covered with 4 atoms.
Thus, the electron-group arrangement of phosphine is tetrahedral. The molecular geometry or shape is a trigonal pyramid. The bond angle is 93°.
To learn more about bond angles, refer to the link:
brainly.com/question/1851495
#SPJ4
<span>The correct answer is either Chrome (Chromium), or Aluminum. Unlike steel, these two don't rust easily and can be polished to be quite shiny, especially Chromium, which is why you'll always hear people who like cars talking about chrome wheels and chrome spoilers and things like that. They are not that good for bumpy or roads that are full of holes because they can bend much easier than steel so it can be expensive to maintain.</span>