So, the answer to 27.) would be <em>2x.</em> Both 6x and 2x can be divided by 2x, but they can't go any higher without the end-answer becoming a fraction. As such, 2x is the greatest common factor.
For 28.), x and x^2 can't be like terms, since like terms have the same variable and exponent :)
Hope I could help!
Oxidation half reaction is written as follows when using using reduction potential chart
example when using copper it is written as follows
CU2+ +2e- --> c(s) +0.34v
oxidasation is the loos of electron hence copper oxidation potential is as follows
cu (s) --> CU2+ +2e -0.34v
Answer:
100 degree celcius, because it is the melting point of ice ob
The full question is shown in the image attached
Answer:
See explanation
Explanation:
In naming an alkane, the first thing we do is to obtain the parent chain by counting the number of carbon atoms in the chain.
When we obtain that, then we identify the substituents and number them in such a way that they have the lowest numbers. The compounds shown have the following names according to the order in which the structures appear in the image attached;
1. 2-methyl propane
2. 2,4-dimethyl heptane
3. 2,2,3,3-tetramethyl butane
4. 5-ethyl-2,4-dimethyl octane
Answer:
When the water is mixed with water at lower temperature the effective temperature of the system (i.e the water at lower temperature) will increase, thereby increasing it's entropy
Explanation:
The answer that "the entropy will is increases" is correct as:
The water at 90° C i.e at higher temperature is mixed with the water at 10° C i.e the water at the lower temperature.
The water at lower temperature will have molecules with lower energy while the water with higher temperature will have molecules undergoing high thermal collisions. Thereby, when the water is mixed with water at lower temperature the effective temperature of the system (i.e the water at lower temperature) will increase, thereby increasing it's entropy.
Therefore, the answer is correct with respect to the water at lower temperature.
Meanwhile, for the water at higher temperature , the temperature of the system will decrease. Thus, the entropy of the water at higher level will decrease.