1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
damaskus [11]
3 years ago
13

What would happen to the fossil when weathering occurs. Would it survive ? ASAP

Physics
1 answer:
Kamila [148]3 years ago
6 0
Yes it would servive beacuse the fossils are dug down into the rockand unable to move
You might be interested in
18. Which would be the most reliable source of information to use for a history report? (2 points)
Paladinen [302]

Answer:

encyclopedia most reliable I think

3 0
3 years ago
Read 2 more answers
Three point charges have equal magnitudes, two being positive and one negative. These charges are fixed to the corners of an equ
Irina-Kira [14]

Answer:

Magnitude of the net force on q₁-

Fn₁=1403 N

Magnitude of the net force on q₂+

Fn₂= 810 N

Magnitude of the net force on q₃+

Fn₃= 810 N

Explanation:

Look at the attached graphic:

The charges of the same sign exert forces of repulsion and the charges of   opposite sign exert forces of attraction.

Each of the charges experiences 2 forces and these forces are equal and we calculate them with Coulomb's law:

F= (k*q*q)/(d)²

F= (9*10⁹*3*10⁻⁶*3*10⁻⁶)(0.01)² =810N

Magnitude of the net force on q₁-

Fn₁x= 0

Fn₁y= 2*F*sin60 = 2*810*sin60° = 1403 N

Fn₁=1403 N

Magnitude of the net force on q₃+

Fn₃x= 810- 810 cos 60° = 405 N

Fn₃y= 810*sin 60° = 701.5 N

Fn_{3} = \sqrt{405^{2}+701.5^{2}  }

Fn₃ = 810 N

Magnitude of the net force on q₂+

Fn₂ = Fn₃ = 810 N

6 0
3 years ago
Graph question pls help thank you!
Natalka [10]
She is traveling at a constant speed.
8 0
3 years ago
Read 2 more answers
By any method you choose, determine your average speed of walking. How do you results compare with those of your classmates?
riadik2000 [5.3K]

joji sanctuary

slow dancing in the dark

happier by olivia

filipino artist like john cena

7 0
2 years ago
Read 2 more answers
Two 60.o-g arrows are fired in quick succession with an initial speed of 82.0 m/s. The first arrow makes an initial angle of 24.
olganol [36]

Answer:

a) The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters, b) Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

Explanation:

a) The first arrow is launch in a parabolic way, that is, horizontal speed remains constant and vertical speed changes due to the effects of gravity. On the other hand, the second is launched vertically, which means that velocity is totally influenced by gravity. Let choose the ground as the reference height for each arrow. Each arrow can be modelled as particles and by means of the Principle of Energy Conservation:

First arrow

U_{g,1} + K_{x,1} + K_{y,1} =  U_{g,2} + K_{x,2} + K_{y,2}

Where:

U_{g,1}, U_{g,2} - Initial and final gravitational potential energy, measured in joules.

K_{x,1}, K_{x,2} - Initial and final horizontal translational kinetic energy, measured in joules.

K_{y,1}, K_{y,2} - Initial and final vertical translational kinetic energy, measured in joules.

Now, the system is expanded and simplified:

m \cdot g \cdot (y_{2} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 2}^{2} -v_{y, 1}^{2}) = 0

g \cdot (y_{2}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,2}^{2})

y_{2}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,2}^{2}}{g}

Where:

y_{1}. y_{2} - Initial and final height of the arrow, measured in meters.

v_{y,1}, v_{y,2} - Initial and final vertical speed of the arrow, measured in meters.

g - Gravitational acceleration, measured in meters per square second.

The initial vertical speed of the arrow is:

v_{y,1} = v_{1}\cdot \sin \theta

Where:

v_{1} - Magnitude of the initial velocity, measured in meters per second.

\theta - Initial angle, measured in sexagesimal degrees.

If v_{1} = 82\,\frac{m}{s} and \theta = 24^{\circ}, the initial vertical speed is:

v_{y,1} = \left(82\,\frac{m}{s} \right)\cdot \sin 24^{\circ}

v_{y,1} \approx 33.352\,\frac{m}{s}

If g = 9.807\,\frac{m}{s^{2}}, v_{y,1} \approx 33.352\,\frac{m}{s} and v_{y,2} = 0\,\frac{m}{s}, the maximum height of the first arrow is:

y_{2} - y_{1} = \frac{1}{2}\cdot \frac{\left(33.352\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }

y_{2} - y_{1} = 56.712\,m

Second arrow

U_{g,1} + K_{y,1} =  U_{g,3} + K_{y,3}

Where:

U_{g,1}, U_{g,3} - Initial and final gravitational potential energy, measured in joules.

K_{y,1}, K_{y,3} - Initial and final vertical translational kinetic energy, measured in joules.

m \cdot g \cdot (y_{3} - y_{1}) + \frac{1}{2}\cdot m \cdot (v_{y, 3}^{2} -v_{y, 1}^{2}) = 0

g \cdot (y_{3}-y_{1}) = \frac{1}{2}\cdot (v_{y,1}^{2}-v_{y,3}^{2})

y_{3}-y_{1} = \frac{1}{2}\cdot \frac{v_{y,1}^{2}-v_{y,3}^{2}}{g}

If g = 9.807\,\frac{m}{s^{2}}, v_{y,1} = 82\,\frac{m}{s} and v_{y,3} = 0\,\frac{m}{s}, the maximum height of the first arrow is:

y_{3} - y_{1} = \frac{1}{2}\cdot \frac{\left(82\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{9.807\,\frac{m}{s^{2}} }

y_{3} - y_{1} = 342.816\,m

The first arrow reaches a maximum height of 56.712 meters, whereas second arrow reaches a maximum height of 342.816 meters.

b) The total energy of each system is determined hereafter:

First arrow

The total mechanical energy at maximum height is equal to the sum of the potential gravitational energy and horizontal translational kinetic energy. That is to say:

E = U + K_{x}

The expression is now expanded:

E = m\cdot g \cdot y_{max} + \frac{1}{2}\cdot m \cdot v_{x}^{2}

Where v_{x} is the horizontal speed of the arrow, measured in meters per second.

v_{x} = v_{1}\cdot \cos \theta

If v_{1} = 82\,\frac{m}{s} and \theta = 24^{\circ}, the horizontal speed is:

v_{x} = \left(82\,\frac{m}{s} \right)\cdot \cos 24^{\circ}

v_{x} \approx 74.911\,\frac{m}{s}

If m = 0.06\,kg, g = 9.807\,\frac{m}{s^{2}}, y_{max} = 56.712\,m and v_{x} \approx 74.911\,\frac{m}{s}, the total mechanical energy is:

E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (56.712\,m)+\frac{1}{2}\cdot (0.06\,kg)\cdot \left(74.911\,\frac{m}{s} \right)^{2}

E = 201.720\,J

Second arrow:

The total mechanical energy is equal to the potential gravitational energy. That is:

E = m\cdot g \cdot y_{max}

m = 0.06\,kg, g = 9.807\,\frac{m}{s^{2}} and y_{max} = 342.816\,m

E = (0.06\,kg)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (342.816\,m)

E = 201.720\,J

Both arrows have a total mechanical energy at their maximum height of 201.720 joules.

7 0
3 years ago
Other questions:
  • A skateboarder starts at 2.75 m/s and accelerates for 8.90 s over a distance of 16.7
    5·1 answer
  • A motorist is traveling at 20 m/s. He is 60 m from a stoplight when he sees it turn yellow. Is reaction time, before stepping on
    7·1 answer
  • How many centimeters are in 24 meters
    15·2 answers
  • ___ + 3H2O + light —> C3H6O3 + 3O2. What amount and substance balance this reaction?
    8·2 answers
  • Benny has 20 jellybeans and wants to share with his friends how many will each friend get? there are 5 friends.
    7·1 answer
  • In diving to a depth of 308 m, an elephant seal also moves 579 m due east of his starting point. What is the magnitude of the se
    8·1 answer
  • Answer fast nnjkxkdivk
    10·1 answer
  • What is the momentum of 70 kg runner traveling at 10 m/s?
    14·2 answers
  • A value with magnitude only is a ?​
    10·1 answer
  • What would most likely happen if the decomposers were removed from the food web?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!