a) 5.67 eV
b) 
c) 
d) 
Explanation:
a)
The photoelectric effect occurs when light is shone on the surface of the metal, and electrons are released from the surface of the metal if the incoming photons have enough energy.
The equation that describes the photoelectric effect is
(1)
where
the first term on the left is the energy of the incoming photons, where
h is the Planck constant
c is the speed of light
is the wavelength of the incoming photons
is the work function of the metal
is the maximum kinetic energy of the photoelectrons
The energy of the photons is (in eV)

So, the work function of this metal is:

b)
The power of the beam of light is
P = 2.00 W
Which means that every second, the energy emitted is 2.00 J; in electronvolts,

Each photon has a energy of (calculated in part a)

Therefore, the number of incoming photons per second is

In the photoelectric effect, the ratio photons:photoelectrons is 1:1, because each incoming photon "hits" only one electron, giving energy to it. Therefore, the number of photoelectrons emitted is equal:

c)
In this case, the power of the light beam is halved; so, the new power is
P = 1.00 W
This means that the energy emitted per second is now

In electronvolts,

And therefore, the number of incoming photons is:

And therefore, since the ratio photons:photoelectrons is 1:1, the number of photoelectrons emitted is:

d)
In this case, the wavelength of the beam is reduced by half, so the new wavelength is

Looking at eq.(1), the equation of the photoelectric effect, we see that this change will affect the energy of the incoming photons. In particular, the new energy of the photons will be:

This means that the energy of the photons is now twice the previous energy: this also means that the emitted photoelectrons will have a larger maximum kinetic energy (since more energy is given off by the photons).
Since the power is still 2.00 W, the total energy emitted per second is
(part b), therefore the number of photons emitted per second is:

So, this is also the number of photoelectrons emitted.