1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondaur [170]
3 years ago
6

A 2.00-W beam of light of wavelength 126 nm falls on a metal surface. You observe that the maximum kinetic energy of the ejected

electrons is 4.20 eV. Assume that each photon in the beam ejects a photoelectron.
(a) What is the work function (in electron volts) of this metal?
(b) How many photoelectrons are ejected each second from this metal?
(c) If the power of the light beam, but not its wavelength, were reduced by half what would be the answer to part (b)?
(d) If the wavelength of the beam, but nots its power, were reduced by half what would be the answer to part (b)?
Physics
1 answer:
Mumz [18]3 years ago
4 0

a) 5.67 eV

b) 1.27\cdot 10^{18}

c) 6.33\cdot 10^{17}

d) 6.33\cdot 10^{17}

Explanation:

a)

The photoelectric effect occurs when light is shone on the surface of the metal, and electrons are released from the surface of the metal if the incoming photons have enough energy.

The equation that describes the photoelectric effect is

\frac{hc}{\lambda}=\phi+K_{max} (1)

where

the first term on the left is the energy of the incoming photons, where

h is the Planck constant

c is the speed of light

\lambda=126 nm=126\cdot 10^{-9}m is the wavelength of the incoming photons

\phi is the work function of the metal

K_{max} is the maximum kinetic energy of the photoelectrons

The energy of the photons is (in eV)

\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34})(3\cdot 10^8)}{126\cdot 10^{-9}}=1.58\cdot 10^{-18} J (\cdot \frac{1}{1.6\cdot 10^{-19}J/eV})=9.87 eV

So, the work function of this metal is:

\phi=\frac{hc}{\lambda}-K_{max}=9.87-4.20=5.67 eV

b)

The power of the beam of light is

P = 2.00 W

Which means that every second, the energy emitted is 2.00 J; in electronvolts,

E=2.00 J \cdot \frac{1}{1.6\cdot 10^{-19}}=1.25\cdot 10^{19}eV

Each photon has a energy of (calculated in part a)

E_1=9.87 eV

Therefore, the number of incoming photons per second is

N=\frac{E}{E_1}=\frac{1.25\cdot 10^{19}}{9.87}=1.27\cdot 10^{18}

In the photoelectric effect, the ratio photons:photoelectrons is 1:1, because each incoming photon "hits" only one electron, giving energy to it. Therefore, the number of photoelectrons emitted is equal:

N=1.27\cdot 10^{18}

c)

In this case, the power of the light beam is halved; so, the new power is

P = 1.00 W

This means that the energy emitted per second is now

E=1.00 J

In electronvolts,

E=1.00\cdot \frac{1}{1.6\cdot 10^{-19}}=6.25\cdot 10^{18} eV

And therefore, the number of incoming photons is:

N=\frac{E}{E_1}=\frac{6.25\cdot 10^{18}}{9.87}=6.33\cdot 10^{17}

And therefore, since the ratio photons:photoelectrons is 1:1, the number of photoelectrons emitted is:

N=6.33\cdot 10^{17}

d)

In this case, the wavelength of the beam is reduced by half, so the new wavelength is

\lambda=\frac{126}{2}=63 nm

Looking at eq.(1), the equation of the photoelectric effect, we see that this change will affect the energy of the incoming photons. In particular, the new energy of the photons will be:

\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34})(3\cdot 10^8)}{63\cdot 10^{-9}}=3.16\cdot 10^{-18} J \cdot (\frac{1}{1.6\cdot 10^{-19}J/eV})=19.7 eV

This means that the energy of the photons is now twice the previous energy: this also means that the emitted photoelectrons will have a larger maximum kinetic energy (since more energy is given off by the photons).

Since the power is still 2.00 W, the total energy emitted per second is 1.25\cdot 10^{19}eV (part b), therefore the number of photons emitted per second is:

N=\frac{E}{E_1}=\frac{1.25\cdot 10^{19}}{19.7}=6.33\cdot 10^{17}

So, this is also the number of photoelectrons emitted.

You might be interested in
Clouds dump around 100 billion gallons of water on rainforests each year. How much rain is evaporated from the rivers, lakes and
posledela
The correct answer is this one: "D) significantly more than 100 billion gallons ." Clouds dump around 100 billion gallons of water on rainforests each year. The amount of  rain is evaporated from the rivers, lakes and surface of rainforests each year is significantly more than 100 billion gallons<span> </span>
3 0
3 years ago
Read 2 more answers
If the mass of the sun is 1x, at least one planet will fall into the habitable zone if I place a planet in orbits___, ____, ____
Minchanka [31]

If the mass of the sun is 1x, at least one planet will fall into the habitable zone. if I place a planet in orbits 1, 3, 5 , 6 and all planets will orbit the sun successfully.

<h3>
What are planets?</h3>

Planets are the large spherical shaped objects that rotate about the Sun in the elliptical orbits.

Planets are shaped from Planetary cloud. The dust storm and gases gathers under its own weight. The dense matter beginnings pivoting at high paces and accumulates more mass. The center structures, the star and rest of it ultimately levels into a curved plate from which planet is formed.

Thus,  if I place a planet in orbits 1, 3, 5 , 6 and all planets will orbit the sun successfully.

Learn more about planets.

brainly.com/question/14581221

#SPJ1

5 0
2 years ago
Which type of radiation travels at the speed of light and penetrates matter easily?
goblinko [34]
The radiation is ultra voilet or Gamma radiation , because their wave length is very short i e 1..0 to 2.5 (angstrom)Ao.
7 0
4 years ago
Read 2 more answers
An air conditioner running with R-134a on a cycle executed under the saturationdome between the pressure limits of 0.8 MPa and 0
ohaa [14]

Answer:

The COP of the system is = 4.6

Explanation:

Given data

Higher pressure  = 1.8 M pa

Lower pressure = 0.12 M pa

Now we have to find out high & ow temperatures at these pressure limits.

Higher temperature corresponding to pressure 1.8 M pa

T_{H} = 62.9 °c = 335.9 K

Lower temperature corresponding to pressure 0.2 M pa

T_{L} = - 10.1 °c = 262.9 K

COP of the system is given by

COP = \frac{T_{L} }{T_{H} -T_{L}   }

COP = \frac{335.9}{335.9 -262.9}

COP = 4.6

Therefore the COP of the system is = 4.6

8 0
3 years ago
50200 J of heat are removed from
Dmitry_Shevchenko [17]

Correct Answer:

3.1375

Explanation:

Use equation Q=mcΔT to find m

Plug in all variables -50200=x\cdot 2000\cdot -8

Answer: 3.1375

4 0
3 years ago
Other questions:
  • In a real isothermal expansion, the temperature of the surroundings must be________the temperature of the gas.
    5·1 answer
  • How far will a runner travel at an average speed of 5m/s for 20 minutes?
    11·1 answer
  • HELP ASAP
    9·1 answer
  • Initially, 0.05kg of air is contained in a piston cylinder device at 200 oc and 1.6 mpa. the air then expands at constant temper
    6·1 answer
  • Can someone please help me on this!!!
    15·1 answer
  • The force behind electron movement is called <br>A. voltage B. current C. resistance D. ohm​
    11·1 answer
  • Describe the work performed by a ski lift in terms of kinetic and gravitational potential energy
    9·2 answers
  • When two objects collide, the momentum of the system remains constant. This is a statement of ______________.
    9·2 answers
  • Help please, I really don’t know the answers
    14·2 answers
  • I don’t not get anything to do with this question
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!