1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondaur [170]
3 years ago
6

A 2.00-W beam of light of wavelength 126 nm falls on a metal surface. You observe that the maximum kinetic energy of the ejected

electrons is 4.20 eV. Assume that each photon in the beam ejects a photoelectron.
(a) What is the work function (in electron volts) of this metal?
(b) How many photoelectrons are ejected each second from this metal?
(c) If the power of the light beam, but not its wavelength, were reduced by half what would be the answer to part (b)?
(d) If the wavelength of the beam, but nots its power, were reduced by half what would be the answer to part (b)?
Physics
1 answer:
Mumz [18]3 years ago
4 0

a) 5.67 eV

b) 1.27\cdot 10^{18}

c) 6.33\cdot 10^{17}

d) 6.33\cdot 10^{17}

Explanation:

a)

The photoelectric effect occurs when light is shone on the surface of the metal, and electrons are released from the surface of the metal if the incoming photons have enough energy.

The equation that describes the photoelectric effect is

\frac{hc}{\lambda}=\phi+K_{max} (1)

where

the first term on the left is the energy of the incoming photons, where

h is the Planck constant

c is the speed of light

\lambda=126 nm=126\cdot 10^{-9}m is the wavelength of the incoming photons

\phi is the work function of the metal

K_{max} is the maximum kinetic energy of the photoelectrons

The energy of the photons is (in eV)

\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34})(3\cdot 10^8)}{126\cdot 10^{-9}}=1.58\cdot 10^{-18} J (\cdot \frac{1}{1.6\cdot 10^{-19}J/eV})=9.87 eV

So, the work function of this metal is:

\phi=\frac{hc}{\lambda}-K_{max}=9.87-4.20=5.67 eV

b)

The power of the beam of light is

P = 2.00 W

Which means that every second, the energy emitted is 2.00 J; in electronvolts,

E=2.00 J \cdot \frac{1}{1.6\cdot 10^{-19}}=1.25\cdot 10^{19}eV

Each photon has a energy of (calculated in part a)

E_1=9.87 eV

Therefore, the number of incoming photons per second is

N=\frac{E}{E_1}=\frac{1.25\cdot 10^{19}}{9.87}=1.27\cdot 10^{18}

In the photoelectric effect, the ratio photons:photoelectrons is 1:1, because each incoming photon "hits" only one electron, giving energy to it. Therefore, the number of photoelectrons emitted is equal:

N=1.27\cdot 10^{18}

c)

In this case, the power of the light beam is halved; so, the new power is

P = 1.00 W

This means that the energy emitted per second is now

E=1.00 J

In electronvolts,

E=1.00\cdot \frac{1}{1.6\cdot 10^{-19}}=6.25\cdot 10^{18} eV

And therefore, the number of incoming photons is:

N=\frac{E}{E_1}=\frac{6.25\cdot 10^{18}}{9.87}=6.33\cdot 10^{17}

And therefore, since the ratio photons:photoelectrons is 1:1, the number of photoelectrons emitted is:

N=6.33\cdot 10^{17}

d)

In this case, the wavelength of the beam is reduced by half, so the new wavelength is

\lambda=\frac{126}{2}=63 nm

Looking at eq.(1), the equation of the photoelectric effect, we see that this change will affect the energy of the incoming photons. In particular, the new energy of the photons will be:

\frac{hc}{\lambda}=\frac{(6.63\cdot 10^{-34})(3\cdot 10^8)}{63\cdot 10^{-9}}=3.16\cdot 10^{-18} J \cdot (\frac{1}{1.6\cdot 10^{-19}J/eV})=19.7 eV

This means that the energy of the photons is now twice the previous energy: this also means that the emitted photoelectrons will have a larger maximum kinetic energy (since more energy is given off by the photons).

Since the power is still 2.00 W, the total energy emitted per second is 1.25\cdot 10^{19}eV (part b), therefore the number of photons emitted per second is:

N=\frac{E}{E_1}=\frac{1.25\cdot 10^{19}}{19.7}=6.33\cdot 10^{17}

So, this is also the number of photoelectrons emitted.

You might be interested in
NEED HELP!!!! 11 POINTS!!!!
Anna007 [38]

Answer:

11

Explanation:

5 0
3 years ago
Read 2 more answers
a balloon inflated in a room at 297k has a volume of 4.00 l. the balloon is then heated to a temperature of 331 k. what is the n
Naddika [18.5K]
V2 = 4.4579 L

Since pressure is constant, use Charle’s law.
Charles's law, a statement that the volume occupied by a fixed amount of gas is directly proportional to its absolute temperature, if the pressure remains constant.

V(olume) 1 = V(olume) 2
————— —————
T(emperature) 1 T(emperature)2

4.00 L = V2
———- ———
297 K 331 K

Cross multiply
(4.00 L x 331 K) = (297 K x V2)
Simplify
1324 L/K = 297 K x V2
Isolate V2 by dividing out 297 K
1324 L/K = V2
————
297 K
(This cancels out the kelvin and leaves you with Liters as the volume measure)

V2 = 4.4579 L

Round to significant digits if required
7 0
2 years ago
3. According to the article, why did Europeans so quickly accept that the sun did move and change?
Sphinxa [80]

Answer:A

Explanation:because it is good

5 0
3 years ago
Read 2 more answers
What does the length of a vector arrow represent?
nalin [4]
The length of a vector arrow represents an magnitude
6 0
1 year ago
HELP PLS MARKING BRANLIST 100 pts TAKING TEST RN
AlladinOne [14]

Answer:

15 m/s^2 The first thing to calculate is the difference between the final and initial velocities. So 180 m/s - 120 m/s = 60 m/s So the plane changed velocity by a total of 60 m/s. Now divide that change in velocity by the amount of time taken to cause that change in velocity, giving 60 m/s / 4.0 s = 15.0 m/s^2 Since you only have 2 significaant figures, round the result to 2 significant figures giving 15 m/s^2

Explanation:

8 0
3 years ago
Other questions:
  • Determine the heat energy required to vaporize 13.9 grams of liquid water at 100° C. O 2,006 cal O 47.8 cal O 7,506 cal O 24.9 c
    12·1 answer
  • How much heat is required to vaporize 1.5kg of liquid water at its boiling point
    10·1 answer
  • Two velcro-covered pucks slide across the ice, collide and stick to one another. Their interaction with the ice is frictionless.
    8·1 answer
  • Two objects have the same size and shape, but one is much heavier than the other. When they are dropped simultaneously from a to
    13·1 answer
  • When a light ray passes from LESS dense water (n = 1.33) into a MORE dense diamond (n = 2.419) at an angle of 45 degrees, its pa
    6·1 answer
  • Will give brainliest if correct <br> Please help
    6·2 answers
  • Newton would agree that all objects on Earth exert a
    15·1 answer
  • The augue
    5·1 answer
  • How is the total kinetic energy of an object calculated?.
    13·1 answer
  • What are three examples of noncontact forces​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!