Due to the gravitational pull of earth the asteroid would be pulled towards earth, so the answer is B.
Answer:
v = 12.52 [m/s]
Explanation:
To solve this problem we must use the energy conservation theorem. Which tells us that potential energy is transformed into kinetic energy or vice versa. This is more clearly as the potential energy decreases the kinetic energy increases.
Ep = Ek
where:
Ep = potential energy [J] (units of joules]
Ek = kinetic energy [J]
Ep = m*g*h
where:
m = mass of the rock = 45 [g] = 0.045 [kg]
g = gravity acceleration = 9.81 [m/s²]
h = elevation = (20 - 12) = 8 [m]
Ek = 0.5*m*v²
where:
v = velocity [m/s]
The reference level of potential energy is taken as the ground level, at this level the potential energy is zero, i.e. all potential energy has been transformed into kinetic energy. In such a way that when the Rock has fallen 12 [m] it is located 8 [m] from the ground level.
m*g*h = 0.5*m*v²
v² = (g*h)/0.5
v = √(9.81*8)/0.5
v = 12.52 [m/s]
The difference between them is that
velocity is the speed with a direction, whereas speed does not have a direction.
Force is used to put things in motion you can’t have motion without force!
Even if it just pushing a piece of paper you still use force to put the paper in motion!
Answer:
Fundamental unit is any unit that is not dependent on other units and other units can be derived from them
Explanation:
Units such as Kilogram, Mass and Time are said to be fundamental units because they are independent.
Differences between Mass and weight;
1. Mass is the measure of the amount of matter in a body while weight is a measure of how the force of gravity acts upon that mass.
2. Mass is a scalar quantity while weight is a vector quantity