1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tatiana [17]
2 years ago
15

Why is there a peak in the graph between static and kinetic friction?

Physics
1 answer:
Anarel [89]2 years ago
3 0
The peak is the top of the graph  for example on a mountain it would be the point. 
You might be interested in
Khaled said the North star is special because it appears all over the world and its changes position.
saw5 [17]
False the North Star never changes it position
3 0
2 years ago
Please help please help
Inessa [10]

Answer: p= m/v so 90kg/.075m^3 = 1,200

2a. .35 m 1.1 m and .015 m

2b. 35 cm x 110 cm x 1.5 cm = 5,775 cm^3 = 57.75 m^3

mass= pv

2700•57.75= 155,925 kg

mass= 155,925 kg

volume= 57.75 m^3

Explanation: physics

6 0
3 years ago
A rigid, insulated tank whose volume is 10 L is initially evacuated. A pinhole leak develops and air from the surroundings at 1
balandron [24]

Answer:

The answer is "143.74^{\circ} \ C , 8.36\ g, and \ 2.77\ \frac{K}{J}"

Explanation:

For point a:

Energy balance equation:

\frac{dU}{dt}= Q-Wm_ih_i-m_eh_e\\\\

W=0\\\\Q=0\\\\m_e=0

From the above equation:

\frac{dU}{dt}=0-0+m_ih_i-0\\\\\Delta U=\int^{2}_{1}m_ih_idt\\\\

because the rate of air entering the tank that is h_i constant.

\Delta U = h_i \int^{2}_{1} m_i dt \\\\= h_i(m_2 -m_1)\\\\m_2u_2-m_1u_2=h_i(M_2-m_1)\\\\

Since the tank was initially empty and the inlet is constant hence, m_2u-0=h_1(m_2-0)\\\\m_2u_2=h_1m_2\\\\u_2=h_1\\\\

Interpolate the enthalpy between T = 300 \ K \ and\ T=295\ K. The surrounding air  

temperature:

T_1= 25^{\circ}\ C\ (298.15 \ K)\\\\\frac{h_{300 \ K}-h_{295\ K}}{300-295}= \frac{h_{300 \ K}-h_{1}}{300-295.15}

Substituting the value from ideal gas:

\frac{300.19-295.17}{300-295}=\frac{300.19-h_{i}}{300-298.15}\\\\h_i= 298.332 \ \frac{kJ}{kg}\\\\Now,\\\\h_i=u_2\\\\u_2=h_i=298.33\ \frac{kJ}{kg}

Follow the ideal gas table.

The u_2= 298.33\ \frac{kJ}{kg} and between temperature T =410 \ K \ and\  T=240\ K.

Interpolate

\frac{420-410}{u_{240\ k} -u_{410\ k}}=\frac{420-T_2}{u_{420 k}-u_2}

Substitute values from the table.

 \frac{420-410}{300.69-293.43}=\frac{420-T_2}{{u_{420 k}-u_2}}\\\\T_2=416.74\ K\\\\=143.74^{\circ} \ C\\\\

For point b:

Consider the ideal gas equation.  therefore, p is pressure, V is the volume, m is mass of gas. \bar{R} \ is\  \frac{R}{M} (M is the molar mass of the  gas that is 28.97 \ \frac{kg}{mol} and R is gas constant), and T is the temperature.

n=\frac{pV}{TR}\\\\

=\frac{(1.01 \times 10^5 \ Pa) \times (10\ L) (\frac{10^{-3} \ m^3}{1\ L})}{(416.74 K) (\frac{8.314 \frac{J}{mol.k} }{2897\ \frac{kg}{mol})}}\\\\=8.36\ g\\\\

For point c:

 Entropy is given by the following formula:

\Delta S = mC_v \In \frac{T_2}{T_1}\\\\=0.00836 \ kg \times 1.005 \times 10^{3} \In (\frac{416.74\ K}{298.15\ K})\\\\=2.77 \ \frac{J}{K}

5 0
2 years ago
Tim and Rick both can run at speed Vr and walk at speed Vw, with Vr > Vw.
miss Akunina [59]

Answer:

Δt =  \frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw}

Explanation:

Hi there!

Using the equation of speed for the whole trip, we can obtain the time each one needed to cover the distance D.

The speed (v) is calculated by dividing the traveled distance (d) over the time needed to cover that distance (t):

v = d/t

Rick traveled half of the distance at Vr and the other half at Vw. Then, when v = Vr, the distance traveled was D/2 and the time is unknown, Δt1:

Vr = D/ (2 · Δt1)

For the other half of the trip the expression of velocity will be:

Vw = D/(2 · Δt2)

The total time traveled is the sum of both Δt:

Δt(total) = Δt1 + Δt2

Then, solving the first equation for Δt1:

Vr = D/ (2 · Δt1)

Δt1 = D/(2 · Vr)

In the same way for the second equation:

Δt2 = D/(2 · Vw)

Δt + Δt2 = D/(2 · Vr) + D/(2 · Vw)

Δt(total) = D/2 · (1/Vr + 1/Vw)

The time needed by Rick to complete the trip was:

Δt(total) = D/2 · (1/Vr + 1/Vw)

Now let´s calculate the time it took Tim to do the trip:

Tim walks half of the time, then his speed could be expressed as follows:

Vw = 2d1/Δt  Where d1 is the traveled distance.

Solving for d1:

Vw · Δt/2 = d1

He then ran half of the time:

Vr = 2d2/Δt

Solving for d2:

Vr · Δt/2 = d2

Since d1 + d2 = D, then:

Vw · Δt/2 +  Vr · Δt/2 = D

Solving for Δt:

Δt (Vw/2 + Vr/2) = D

Δt = D / (Vw/2 + Vr/2)

Δt = D/ ((Vw + Vr)/2)

Δt = 2D / (Vw + Vr)

The time needed by Tim to complete the trip was:

Δt = 2D / (Vw + Vr)

Let´s find the diference between the time done by Tim and the one done by Rick:

Δt(tim) - Δt(rick)

2D / (Vw + Vr) - (D/2 · (1/Vr + 1/Vw))

\frac{2D}{Vw+Vr} - \frac{D}{2Vr} - \frac{D}{2Vw} = Δt

Let´s check the result. If Vr = Vw:

Δt = 2D/2Vr - D/2Vr - D/2Vr

Δt = D/Vr - D/Vr = 0

This makes sense because if both move with the same velocity all the time both will do the trip in the same time.

8 0
3 years ago
A solid conducting sphere of radius 2.00 cm has a charge of 6.88 μC. A conducting spherical shell of inner radius 4.00 cm and ou
zepelin [54]

Explanation:

Given that,

Radius R= 2.00

Charge = 6.88 μC

Inner radius = 4.00 cm

Outer radius  = 5.00 cm

Charge = -2.96 μC

We need to calculate the electric field

Using formula of electric field

E=\dfrac{kq}{r^2}

(a). For, r = 1.00 cm

Here, r<R

So, E = 0

The electric field does not exist inside the sphere.

(b). For, r = 3.00 cm

Here, r >R

The electric field is

E=\dfrac{kq}{r^2}

Put the value into the formula

E=\dfrac{9\times10^{9}\times6.88\times10^{-6}}{(3.00\times10^{-2})^2}

E=6.88\times10^{7}\ N/C

The electric field outside the solid conducting sphere and the direction is towards sphere.

(c). For, r = 4.50 cm

Here, r lies between R₁ and R₂.

So, E = 0

The electric field does not exist inside the conducting material

(d).  For, r = 7.00 cm

The electric field is

E=\dfrac{kq}{r^2}

Put the value into the formula

E=\dfrac{9\times10^{9}\times(-2.96\times10^{-6})}{(7.00\times10^{-2})^2}

E=5.43\times10^{6}\ N/C

The electric field outside the solid conducting sphere and direction is away of solid sphere.

Hence, This is the required solution.

6 0
3 years ago
Other questions:
  • What happens when a cell stops using energy?
    14·2 answers
  • Would the friction force increase, decrease, or stay the same if Marco added two more blocks to the sled or wagon? Explain your
    12·1 answer
  • A man has a mass of 110kg. What is his weight?
    8·1 answer
  • Explain how machines make work easier if they still require that the same amount of work be done.
    9·2 answers
  • How does Connecticut energy affect the stopping distance of a vehicle traveling at 30 mph compared to the same vehicle traveling
    6·1 answer
  • What three tests must all theories pass to be considered a proven theory?
    8·1 answer
  • Soap bubble interference Light of 690-nm wavelength interferes constructively when reflected from a soap bubble having refractiv
    14·1 answer
  • Consider a 100 g object dropped from a height of 1 m. Assuming no air friction (drag), when will the object hit the ground and a
    13·1 answer
  • Which of the following is a science?
    8·1 answer
  • Question 16 of 25
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!