The nuclear reaction occurring is known as alpha-decay, and during this process, an alpha particle is released from a heavy radioactive nucleus to form a lighter more stable nucleus. The alpha particle is equivalent to a helium nucleus, which means it contains 2 protons and two neutrons (net charge of +2)
The decay equation is:
Rn → Po + α
Answer:
14. 13.2cg = 1.32dg
15. 3.8m = 0.0038km
16. 24.8L = 24800mL
17. 0.87kL = 870L
18. 26.01cm = 0.0002601km
19. 0.001hm = 10cm
Explanation:
14. 13.2/10 = 1.32
15. 38/1000 = 0.0038
16. 24.8(1000) = 24,800
17. 0.87(1000) = 870
18. 26.01/100000 = 0.0002601
19. 0.001hm(10000) = 10
An easy way to do these by yourself is to familiarize yourself with what each prefix means. Once you do this, you can multiply the value of the prefix when converting from a smaller unit of measurement to a larger one and divide the value of the prefix when converting from a large unit of measurement to a smaller one.
Answer:
b. It should be dumped in a beaker labeled "waste copper" on one's bench during the experiment.
d. It should be disposed of in the bottle for waste copper ion when work is completed.
Explanation:
Solutions containing copper ion should never be disposed of by dumping them in a sink or in common trash cans, because this will cause pollution in rivers, lakes and seas, being a contaminating agent to both human beings and animals. They should be placed in appropriate compatible containers that can be hermetically sealed. The sealed containers must be labeled with the name and class of hazardous substance they contain and the date they were generated.
It never should be returned to the bottle containing the solution, since it can contaminate the solution of the bottle.
In the Solutions and Spectroscopy experiments there is always wastes.