Answer:
Group 1
Explanation: because the compound has a formula of M2O , the number of valence electrons of M should be 1.
Answer:
V = 22.42 L/mol
N₂ and H₂ Same molar Volume at STP
Explanation:
Data Given:
molar volume of N₂ at STP = 22.42 L/mol
Calculation of molar volume of N₂ at STP = ?
Comparison of molar volume of H₂ and N₂ = ?
Solution:
Molar Volume of Gas:
The volume occupied by 1 mole of any gas at standard temperature and pressure and it is always equal to 22.42 L/ mol
Molar volume can be calculated by using ideal gas formula
PV = nRT
Rearrange the equation for Volume
V = nRT / P . . . . . . . . . (1)
where
P = pressure
V = Volume
T= Temperature
n = Number of moles
R = ideal gas constant
Standard values
P = 1 atm
T = 273 K
n = 1 mole
R = 0.08206 L.atm / mol. K
Now put the value in formula (1) to calculate volume for 1 mole of N₂
V = 1 x 273 K x 0.08206 L.atm / mol. K / 1 atm
V = 22.42 L/mol
Now if we look for the above calculation it will be the same for H₂ or any gas. so if we compare the molar volume of 1 mole N₂ and H₂ it will be the same at STP.
Answer:
1. The dye that absorbs at 530 nm.
Explanation:
The dye will absorb light to promote the transition of an electron from the HOMO to the LUMO orbital.
The higher the gap, the higher the energy of transition. The energy can be calculated by E = hc/λ, in which h and c are constants and λ is the wavelength.
The equation shows that the higher the energy, the higher the gap and the lower the wavelength.
Therefore, the dye with absorption at 530 nm has the higher HOMO-LUMO gap.
Electrons in an atom can be classified as core electrons and valence electrons. Valence electrons are those electrons which are present in valence shell and participates in bond formation. While, Core electrons are all remaining electrons which are not present in valence shell, hence not take part in bonding.
Atomic number of Selenium (Se) is 34 hence it has 34 electrons with following electronic configuration;
1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁴
From electronic configuration it is found that the valence shell is 4, and the number of electrons present in valence shell are 6. So,
Core Electrons = Total Electrons - Valence Electrons
Core Electrons = 34 - 6
Core Electrons = 28
Result:
There are 28 core electrons in Selenium.
Answer:
Option D. 30 mL.
Explanation:
Step 1:
The balanced equation for the reaction. This is given below:
HNO3 + KOH —> KNO3 + H2O
From the balanced equation above,
The mole ratio of the acid, nA = 1
The mole ratio of the base, nB = 1
Step 2:
Data obtained from the question. This include the following:
Volume of base, KOH (Vb) =.?
Molarity of base, KOH (Mb) = 0.5M
Volume of acid, HNO3 (Va) = 10mL
Molarity of acid, HNO3 (Ma) = 1.5M
Step 3:
Determination of the volume of the base, KOH needed for the reaction. This can be obtained as follow:
MaVa / MbVb = nA/nB
1.5 x 10 / 0.5 x Vb = 1
Cross multiply
0.5 x Vb = 1.5 x 10
Divide both side by 0.5
Vb = (1.5 x 10) /0.5
Vb = 30mL
Therefore, the volume of the base, KOH needed for the reaction is 30mL.