Answer:
2274 J/kg ∙ K
Explanation:
The complete statement of the question is :
A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at 15 °C. In a few minutes, she measures the final temperature of the system to be 40.0°C. What is the specific heat of the 400.0-g piece of metal, assuming that no significant heat is exchanged with the surroundings? The specific heat of this aluminum is 900.0 J/kg ∙ K and that of water is 4186 J/kg ∙ K.
= mass of metal = 400 g
= specific heat of metal = ?
= initial temperature of metal = 100 °C
= mass of aluminum cup = 100 g
= specific heat of aluminum cup = 900.0 J/kg ∙ K
= initial temperature of aluminum cup = 15 °C
= mass of water = 500 g
= specific heat of water = 4186 J/kg ∙ K
= initial temperature of water = 15 °C
= Final equilibrium temperature = 40 °C
Using conservation of energy
heat lost by metal = heat gained by aluminum cup + heat gained by water

Explanation:
Let us calculate the work done in lifting an object of mass m through a height h, such as in Figure 1. If the object is lifted straight up at constant speed, then the force needed to lift it is equal to its weight mg. The work done on the mass is then W = Fd = mgh. We define this to be the gravitational potential energy (PEg) put into (or gained by) the object-Earth system. This energy is associated with the state of separation between two objects that attract each other by the gravitational force
Potential energy is a property of a system rather than of a single object—due to its physical position. An object’s gravitational potential is due to its position relative to the surroundings within the Earth-object system. The force applied to the object is an external force, from outside the system. When it does positive work it increases the gravitational potential energy of the system. Because gravitational potential energy depends on relative position, we need a reference level at which to set the potential energy equal to 0. We usually choose this point to be Earth’s surface, but this point is arbitrary; what is important is the difference in gravitational potential energy, because this difference is what relates to the work done. The difference in gravitational potential energy of an object (in the Earth-object system) between two rungs of a ladder will be the same for the first two rungs as for the last two rungs.
Answer:
a) 
b) 
Explanation:
Given data:
Electric field = 1.47 N/C
velocity of electron is 
distance of point b from point A is 0.55 m
we know that acceleration of particle is given as
a) for electron



from equation of motion we have



b) for proton


from equation of motion we have



Answer:
The bones aren't as strong as a younger person, because an older person, ages due to time and it also depend on what they do in their past.
Does this help? ^-^"
Answer:
1. is the age group 35 and 44
2. is 2006 i think its 2006 i cant really tell in the picture but its the one before the last one!