Answer:
B'=1.935 T
Explanation:
Given that
magnetic field ,B= 0.645 T
We know that magnetic filed in the solenoid is given as

I=Current
n=Number of turn per unit length
μ0 =magnetic permeability
Now when the current increased by 3 factors
I'=3 I
Then the magnetic filed


B'=3 B
That is why
B' = 3 x 0.645 T
B'=1.935 T
Therefore the new magnetic filed will be 1.935 T.
Answer:
2.73×10¯³⁴ m.
Explanation:
The following data were obtained from the question:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Wavelength (λ) =?
Next, we shall determine the energy of the ball. This can be obtained as follow:
Mass (m) = 0.113 Kg
Velocity (v) = 43 m/s
Energy (E) =?
E = ½m²
E = ½ × 0.113 × 43²
E = 0.0565 × 1849
E = 104.4685 J
Next, we shall determine the frequency. This can be obtained as follow:
Energy (E) = 104.4685 J
Planck's constant (h) = 6.63×10¯³⁴ Js
Frequency (f) =?
E = hf
104.4685 = 6.63×10¯³⁴ × f
Divide both side by 6.63×10¯³⁴
f = 104.4685 / 6.63×10¯³⁴
f = 15.76×10³⁴ Hz
Finally, we shall determine the wavelength of the ball. This can be obtained as follow:
Velocity (v) = 43 m/s
Frequency (f) = 15.76×10³⁴ Hz
Wavelength (λ) =?
v = λf
43 = λ × 15.76×10³⁴
Divide both side by 15.76×10³⁴
λ = 43 / 15.76×10³⁴
λ = 2.73×10¯³⁴ m
Therefore, the wavelength of the ball is 2.73×10¯³⁴ m.
Retrograde. Planets seem to move forward and then backward sometimes. This is really because we pass them as we move in our orbit but astronomers wanted to try to describe the solar system with earth at the center so elaborate models were employed.
Answer:
because of the raindrop velocity relative of the car has a vertical and horizontal component
Explanation:
- The car moves in a <em>horizontal direction </em>relative to the ground. The raindrops fall in the <em>vertical direction</em> relative to the ground.
- Their velocity relative to the moving car has both vertical and horizontal components and this is the reason for the diagonal streaks on the side window.
-
The diagonal streaks on the windshield arise from a different reason.
-
The drops are pushed off to one side of the windshield because of air resistance.