Hey! So referring to the data the thing we can clearly see is that in a vacuum, everything, regardless of its mass, falls at the same speed.
Acceleration is often confused with speed, or velocity, but the difference is, acceleration by definition is the rate of which an object falls with respect to its mass and time.
Every single thing in the world falls at the same acceleration, this is because of gravity. The difference is the speed of which it falls. In space, there is not any gravity, and so, the objects are able to fall at the same speed regardless of their mass.
Explanation:
Usually when we think of waves, we think of transverse waves. These are waves where points move up and down perpendicular to the motion of the wave. Examples include water waves, whipping a rope, or even doing the "wave" in a crowd. You can think of these as "two dimensional" waves.
Longitudinal waves are waves where points move left or right, parallel to the motion of the wave. In other words, there is compression and expansion of the medium. Examples include sound waves, or pulses in a slinky.
1. Answer: components
A two dimensional vector can be divided into two parts called horizontal component and vertical component.
A three dimensional vector can be divided into three components: one along x-axis, one along y-axis and one along z-axis.
Hence, the vector parts that add up to the resultant are called components.
2. Answer: 5 miles.
The resultant distance along the straight line from the starting point to the end point would be the displacement.
The displacement would be equal to the magnitude of the hypotenuse formed in the right triangle.
Displacement, 
3. Answer: Scalar
A scalar quantity has only magnitude. For example, speed and distance are scalar quantities and can be normally added to find the total.
A vector quantity has both magnitude as well as direction. The components are summed according to vector addition rules. For example, velocity, acceleration, force etc.
The Doppler effect occurs when a source of sound or light
moves either toward or away from the observer.