Answer:
4.04 s
Explanation:
h = vi + 1/2 a t ^2
HERE h = 80 m , vi = 0 , a =9.81 m/s^2
80 = 0 + 1/2 × 9.81 × t ^2
80 = 4.905 t^2
t^2 = 80/4.905
t ^2 = 16.30988
t = square root of 16.30988
t = 4.0385 s
t = 4.04 s
I believe that the correct given values are:
density = 755 kg/m^3
volume = 640 cm^3
First let us convert volume to m^3 units.
volume = 640 cm^3 * (1 m / 100 cm)^3 = 6.4 x 10^-4 m^3
so the mass is:
mass = 755 kg/m^3 * (6.4 x 10^-4 m^3)
<span>mass = 0.4832 kg = 483.2 g</span>
Force is directly proportional to mass according to the second law of Newton, meaning that the greater the mass is, bigger the force should be in order to move the object. In this case, Mutt's wagon has a mass two times greater than Jeff's and they have to be equal. So either Jeff must slow down twice as much or Mutt has to speed up twice as much. The only option we can choose according to our reasoning is that Mutt must use twice as much force to push his cart, because his mass is two times bigger. According to me the answer is C).
Density= population/area
area= 12 X 7 = 84 m^2
density= 168/84= 2 mice per m^2
Answer:
The slope of a position-time graph can be calculated as:

where
is the increment in the y-variable
is the increment in the x-variable
We can verify that the slope of this graph is actually equal to the velocity. In fact:
corresponds to the change in position, so it is the displacement, 
corresponds to the change in time
, so the time interval
Therefore the slope of the graph is equal to

which corresponds to the definition of velocity.