Answer:
(a) Distance traveled = 75.3846 m
(b) Velocity of car at that instant will be 14 m/sec
Explanation:
We have given acceleration of the car 
Initial velocity of the cart u = 0 m/sec
(a) According to second equation of motion we know that 
So distance traveled by car 
As the truck is moving with constant speed
So distance traveled by truck 
As the truck overtakes the car
So 


So distance traveled 
(b) From second equation of motion we know that v = u+at
So v = 0+1.3×10.769 = 14 m /sec
Answer:
The correct answer is option B)
Explanation:
Considering the given question as -
The space shuttle is located exactly half way between the earth and the moon. Which statement is true regarding the gravitational pull on the shuttle? A) The moon pulls more on the shuttle. B) The earth pulls more on the shuttle. C) Both are equal due to equal distances. D) Both are equal due to the mass of the shuttle.
We know that gravitational pull (F) between any two bodies of mass
and
is given by -
F =
where 'r' is the distance between the two bodies.
Let ,
: Mass of the earth
: Mass of the moon
m : Mass of the satellite
: Distance of satellite from earth
: Distance of satellite from moon
Given that
=
Let
=
=r
Force on satellite by the earth is -
= 
Force on satellite by the moon is -
= 
∵ Mass of earth (
) > Mass of moon (
)
∴
> 
∴ The gravitational pull of earth on satellite is more than that of the moon.
Answer:
The position of the first dark spot on the positive side of the central maximum is 1.26 mm.
Explanation:
Given that,
Wavelength of light is 633 nm.
Slit width, d = 0.5 mm
The diffraction pattern forms on a screen 1 m away from the slit. We need to find the position of the first dark spot on the positive side of the central maximum.
For destructive interference :

Y is the distance of the minima from central maximum
Here, n = 1

So, the position of the first dark spot on the positive side of the central maximum is 1.26 mm.
The acceleration of the body is provided by the tension in the rope.
<h3>What is centripetal acceleration?</h3>
The centripetal acceleration is given by a = v^2/r. v = velocity of the body, r = radius
a = (8.40 m/s)^2/(8.50 m)
a = 8.3 m/s^2
The tension in the rope is the force that provides the centripetal force in the rope.
Learn more of centripetal acceleration:brainly.com/question/14465119
#SPJ1
Answer:
option D
Explanation:
also to add.... there exists a solubility equilibrium between solid solute and the solution.