Answer:
Time taken for 1 swing = 3.81 second
Explanation:
Given:
Time taken for 1 swing = 2.20 Sec
Find:
Time taken for 1 swing , when triple the length(T2)
Computation:
Time taken for 1 swing = 2π[√l/g]
2.20 = 2π[√l/g].......Eq1
Time taken for 1 swing , when triple the length (3L)
Time taken for 1 swing = 2π[√3l/g].......Eq2
Squaring and dividing the eq(1) by (2)
4.84 / T2² = 1 / 3
T2 = 3.81 second
Time taken for 1 swing = 3.81 second
the study of how matter and energy interact
the study of the natural world around us
the study of human bodies and how they move
There is no "why", because that's not what happens. The truth is
exactly the opposite.
Whatever the weight of a solid object is in air, that weight will appear
to be LESS when the object is immersed in water.
The object is lifted by a force equal to the weight of the fluid it displaces.
It displaces the same amount of air or water, and any amount of water
weighs more than the same amount of air. So the force that lifts the
object in water is greater than the force that lifts it in air, and the object
appears to weigh less in the water.
Answer:
spring deflection is x = (v2 / R + g) m / 4
Explanation:
We will solve this problem with Newton's second law. Let's analyze the situation the car goes down a road and finds a dip (hollow) that we will assume that it has a circular shape in the lower part has the car weight, elastic force and a centripetal acceleration
Let's write the equations on the Y axis of this description
Fe - W = m 
Where Fe is elastic force, W the weight and
the centripetal acceleration. The elastic force equation is
Fe = - k x
4 (k x) - mg = m v² / R
The four is because there are four springs, R is theradio of dip
We can calculate the deflection (x) of the springs
x = (m v2 / R + mg) / 4
x = (v2 / R + g) m / 4