Answer:
The gravitational potential energy of that rock is 174371.4 J.
Explanation:
Given
To determine
We need to find the gravitational potential energy of the rock
We know that the potential energy of a body is termed as the stored energy due to its position.
One kind of energy comes from Earth's gravity — Gravitational potential energy (GPE).
Gravitational potential energy (GPE) can be determined using the formula

where
is the mass
is the gravitational acceleration which is equal to g = 9.8 m/s²
is the height
- GPE is the Gravitational potential energy
now substituting m = 59.31, h = 300 and g = 9.8


J
Therefore, the gravitational potential energy of that rock is 174371.4 J.
Answer:
1) Hence, the period is 0.33 s.
2) The amplitude is 10 cm.
Explanation:
1) The period is given by:

Where:
f: is the frequency = 3 bob up and down each second = 3 s⁻¹ = 3 Hz
Hence, the period is 0.33 s.
2) The amplitude is the distance between the equilibrium position and the maximum position traveled by the spring. Since the spring is moving up and down over a distance of 20 cm, then the amplitude is:
Therefore, the amplitude is 10 cm.
I hope it helps you!
Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
Answer:
a) 
b) 
Explanation:
given,
n =1.5 for glass surface
n = 1 for air
incidence angle = 45°
using Fresnel equation of reflectivity of S and P polarized light

using snell's law to calculate θ t


a) 

b) 
