Answer:
ρ = 830.32 kg/m³
Explanation:
Given that
Oil head = 12.2 m
h= 12.2 m
Pressure P = 1.013 x 10⁵ Pa
Lets take density of the liquid =ρ
The pressure due to liquid P given as
P = ρ g h
Now by putting the all values in the above equation
1.013 x 10⁵ Pa = ρ x 10 x 12.2 ( take g =10 m/s²)
ρ = 830.32 kg/m³
Therefore the density of oil is 830.32 kg/m³
Answer:
1. t = 0.0819s
2. W = 0.25N
3. n = 36
4. y(x , t)= Acos[172x + 2730t]
Explanation:
1) The given equation is

The relationship between velocity and propagation constant is

v = 15.87m/s
Time taken, 

t = 0.0819s
2)
The velocity of transverse wave is given by


mass of string is calculated thus
mg = 0.0125N

m = 0.00128kg


0.25N
3)
The propagation constant k is

hence

0.036 m
No of wavelengths, n is

n = 36
4)
The equation of wave travelling down the string is
![y(x, t)=Acos[kx -wt]\\\\becomes\\\\y(x , t)= Acos[(172 rad.m)x + (2730 rad.s)t]](https://tex.z-dn.net/?f=y%28x%2C%20t%29%3DAcos%5Bkx%20-wt%5D%5C%5C%5C%5Cbecomes%5C%5C%5C%5Cy%28x%20%2C%20t%29%3D%20Acos%5B%28172%20rad.m%29x%20%2B%20%282730%20rad.s%29t%5D)
![without, unit\\\\y(x , t)= Acos[172x + 2730t]](https://tex.z-dn.net/?f=without%2C%20unit%5C%5C%5C%5Cy%28x%20%2C%20t%29%3D%20Acos%5B172x%20%2B%202730t%5D)
Answer:
C is the right answer.
Body massager uses electrical energy to move back and forth. In this sense, a motor is being used for the operation
In kynematics you describe the motion of particles using vectors and their change in time. You define a position vector r for a particle, and then define velocity v and acceleration a as


In dynamics Newton's laws predict the acceleration for a given force. Knowing the acceleration, and the kynematical relations defines above, you can solve for the position as a function of time: r(t)
Answer:
a) 
b) 
c) 
d) 
Explanation:
<u>Given equation of pressure variation:</u>
![\Delta P= (1.78\ Pa)\ sin\ [(0.888\ m^{-1})x-(500\ s^{-1})t]](https://tex.z-dn.net/?f=%5CDelta%20P%3D%20%281.78%5C%20Pa%29%5C%20sin%5C%20%5B%280.888%5C%20m%5E%7B-1%7D%29x-%28500%5C%20s%5E%7B-1%7D%29t%5D)
We have the standard equation of periodic oscillations:

<em>By comparing, we deduce:</em>
(a)
amplitude:

(b)
angular frequency:


∴Frequency of oscillations:


(c)
wavelength is given by:



(d)
Speed of the wave is gives by:


