Answer:
3.1216 m/s.
Explanation:
Given:
M1 = 0.153 kg
v1 = 0.7 m/s
M2 = 0.308 kg
v2 = -2.16 m/s
M1v1 + M2v2 = M1V1 + M2V2
0.153 × 0.7 + 0.308 × -2.16 = 0.153 × V1 + 0.308 × V2
= 0.1071 - 0.66528 = 0.153 × V1 + 0.308 × V2
0.153V1 + 0.308V2 = -0.55818. i
For the velocities,
v1 - v2 = -(V1 - V2)
0.7 - (-2.16) = -(V1 - V2)
-(V1 - V2) = 2.86
V2 - V1 = 2.86. ii
Solving equation i and ii simultaneously,
V1 = 3.1216 m/s
V2 = 0.2616 m/s
The main cause of this is Friction. The more oil that is laid down, the less friction there is between the ball and the lane surface. The less friction, the harder it is for the bowler to send the ball in a curved path imparted by the spin that the bowler puts on the ball at the instant of release.
Answer:
<h2>
3338.98 kg/m³</h2>
Explanation:
The formula for calculating the relative density of a substance is expressed as
Relative density of a liquid = Density of the liquid /density of water
Given relative density of a liquid = 0.34
Density of water 997kg/m³
Substituting into the formula we have;
Density of the liquid = Relative density of a liquid * density of water
Density of the liquid = 0.34 * 997
Density of the liquid = 3338.98 kg/m³
Answer:
Explanation:
Given
Two masses
and
is released and there is tension T in the string
Suppose a is the acceleration of the system
Therefore from Diagram
For 

------1
for m_2 body

-------2
From above two Equation it is said that Tension is greater than m_1g and less than m_2g
