Yes... This is a question google could answer. Just Saying
We will use this equation:
s = 1/2*a*t^2 + v0*t + s0
where:
s = space traveled
a = acceleration
t = time
v0 = initial speed
s0 = initial space
In this case::
v0 = 0
s0 = 0
So our equation will look like that now:
s = 1/2 * a * t^2
let's calculate the acceleration first of all:
a = (vf - vi) / t
where vf is the final speed and vi is the initial speed. t is the time.
a = (25m/s) / 10s = 2.5 m/s^2
Now we can calculate the space:
s = 1/2 * (2.5 m/s^2) * (10s)^2 = 125m
---
Hope it was helpful! Have a great day.
Answer:
v = 94m/s
Explanation:
Using the first equation of motion
v = u + at
u = 4m/s , a = 3m/s² , t = 30s , v = ?
v = u + at
v = 4 + 3 × 30
v = 4 + 90
v = 94m/s
I hope this was helpful, please mark as brainliest
Answer:
If voltage is kept constant across the resistor itself, it' current will reduce. If the resistance is part of oscillator circuit, frequency response will change. If it is in series with capacitor or inductor, it will change the damping effect.
Explanation: