Answer:
Distance is a scalar quantity that refers to "how much ground an object has covered" during its motion. Displacement is a vector quantity that refers to "how far out of place an object is"; it is the object's overall change in position.
Explanation:
Answer:
light waves can be converted to electricity through <em>a solar cell</em>
Explanation:
a substance dissolves.
like adding a soluble salt to water, it just dissolves, i.e dissociates homogeneously as water is able to dissociate salts (ionic compounds) into its ions. (it can also dissociate other non-ionic compounds like HCL)
the salt still remains chemically as a salt and is unchanged chemically thus it is not an indication of a chemical reaction as no chemical reaction has taken place.
the formation of a precipitate is a chemical reaction because a new substance (i.e new chemical) is formed. For example adding aqueous sodium hydroxide into an aqueous solution with CU2+ cations will form a blue precipitate (that is copper (II) hydroxide which is insoluble, hence it precipitates). Since a new chemical is formed, a chemical reaction has taken place and thus indicates a chemical reaction.
color change... im not sure but usually a color change will only occur when a new substance is formed. Like iron corrodes (i.e rust) slowly in moist air to form hydrated iron (III) oxide that is rust. (brown color).
usually adding a mixture to a mixture has little energy change, i.e little heat taken in by the reaction mixture or little heat given out by the reaction mixture. Whereas when a new substance is formed, there is usually noticeable energy change like the container gets colder or hotter (without heat being supplied of course). For example dissolving basic oxides into water releases energy ( more energy released than gained = exothermic reaction).
i think that should be the answer... hope it helped :D
Answer:
<em>The comoving distance and the proper distance scale</em>
<em></em>
Explanation:
The comoving distance scale removes the effects of the expansion of the universe, which leaves us with a distance that does not change in time due to the expansion of space (since space is constantly expanding). The comoving distance and proper distance are defined to be equal at the present time; therefore, the ratio of proper distance to comoving distance now is 1. The scale factor is sometimes not equal to 1. The distance between masses in the universe may change due to other, local factors like the motion of a galaxy within a cluster. Finally, we note that the expansion of the Universe results in the proper distance changing, but the comoving distance is unchanged by an expanding universe.