The answer would be:
The comb gains electrons.
The hair loses electrons.
In chemistry, the charge depends on the electrons and protons. The electron will give negative charge and proton will give the positive charge. Proton is located in the nucleus of the atoms so it won't easily move like electron which located in the orbit in the atoms perimeter. So, ignore the option with the proton.
If the combs become negatively charged, that means it gain some electron. Since something gain electron, that means another thing is losing an electron. That electron comes from the hair.
Answer:When prfessionals take data collections its important becasue it can cause error. Lets say they are sloppy with thier work and end up getting something that is not near what should be happening. This can have a major affect on the truth of what they are doing and an effect on thier end result in general.
Explanation:
The change in the player's internal energy is -491.6 kJ. The number of nutritional calories is -117.44 kCal
For this process to take place, some of the basketball player's perspiration must escape from the skin. This is because sweating relies on a physical phenomenon known as the heat of vaporization.
The heat of vaporization refers to the amount of heat required to convert 1g of a liquid into a vapor without causing the liquid's temperature to increase.
From the given information,
- the work done on the basketball is dW = 2.43 × 10⁵ J
The amount of heat loss is represented by dQ.
where;
∴
Using the first law of thermodynamics:b
dU = dQ - dW
dU = -mL - dW
dU = -(0.110 kg × 2.26 × 10⁶ J/kg - 2.43 × 10⁵ J)
dU = -491.6 × 10³ J
dU = -491.6 kJ
The number of nutritional calories the player has converted to work and heat can be determined by using the relation:

dU = -117.44 kcal
Learn more about first law of thermodynamics here:
brainly.com/question/3808473?referrer=searchResults
It would be A because it would make sense
Answer:
The speed of the ambulance is 4.30 m/s
Explanation:
Given:
Frequency of the ambulance, f = 1790 Hz
Frequency at the cyclist, f' = 1780 Hz
Speed of the cyclist, v₀ = 2.36 m/s
let the velocity of the ambulance be 'vₓ'
Now,
the Doppler effect is given as:

where, v is the speed of sound
since the ambulance is moving towards the cyclist. thus, the sign will be positive
thus,

on substituting the values, we get

or
vₓ = 4.30 m/s
Hence, <u>the speed of the ambulance is 4.30 m/s</u>