Hello!
A solution of a weak base and its conjugate acid act as a better buffer than does a solution of a weak base alone because <span>A solution of a weak base alone has no acid present to absorb added base.</span>
If an acid (In this case HCl) is added to a buffer or a weak base solution, the following reaction happens:
HCl + A⁻ → HA + Cl⁻
In this way, the addition of acid is neutralized by the base.
If a base is added (In this case NaOH), only a solution of a weak base and its conjugate acid can react in the following way:
NaOH + HA → NaA + H₂O
So, a solution of only a weak base can resist the addition of acids but not bases, so it isn't a good buffer.
Have a nice day!
Answer:
Elements in the same group of the periodic table have the same number of valence electrons. These are the electrons in their outer energy level that can be involved in chemical reactions. ... All the elements in group 1 have just one valence electron. This makes them very reactive.
Explanation:
Answer:
A) Misinformation! Contradicts info given.
B) Turtles laying eggs now were not affected by the spill. Effect of spill should be approximately 10 yrs later.
Answer: -
3.3° C
Explanation: -
Mass of water m = 180.5 g
Energy released as heat Q = 2494 J
Specific heat is defined as the heat required to raise the temperature of the unit mass of a given substance by 1 C.
Specific heat of water Cp = 4.184 (J/g)⋅∘C
Using the formula
Q = m x Cp x ΔT
We get temperature change ΔT = Q / (m x Cp)
= 2494 J / ( 180.5 g x 4.184 (J/g)⋅∘C
= 3.3° C
Thus the temprature change, (ΔT), of the wateris 3.3 °C if 180.5 g of water sat in the copper pipe from part A, releasing 2494 J of energy to the pipe