The answer to this question is:
A circle is growing so that the radius is increasing at the rate of 2cm/min. How fast is the area of the circle changing at the instant the radius is 10cm? Include units in your answer.?
✔️I assume here the linear scale is changing at the rato of 5cm/min
✔️dR/dt=5(cm/min) (R - is the radius.... yrs, of the circle (not the side)
✔️The rate of area change would be d(pi*R^2)/dt=2pi*R*dR/dt.
✔️At the instant when R=20cm,this rate would be,
✔️2pi*20*5(cm^2/min)=200pi (cm^2/min) or, almost, 628 (cm^2/min)
Hoped This Helped, <span>Cello10
Your Welcome :) </span>
Answer:
Step-by-step explanation:
Algebraically, linear functions are polynomials with highest exponent equal to 1 or of the form y = c where c is constant. Nonlinear functions are all other functions. An example of a nonlinear function is y = x^2.
Answer: 0.03 and - 0.06
Step-by-step explanation:
Answer: -4
Step-by-step explanation:
It’s 11 24/64 i did this too