1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klio [65]
3 years ago
15

traveled Downstream a distance of 33 Mi and then came right back. If the speed of the current was 12mph and the total trip took

3 hours and 40 minutes,find the average speed of the boat relative to the water. The boat had an average of what speed in MPH?
Mathematics
1 answer:
spayn [35]3 years ago
7 0
<span>Traveled Downstream a distance of 33 Mi and then came right back. If the speed of the current was 12 mph and the total trip took 3 hours and 40 minutes.
Let S = boat speed in still water then                                                                         (s + 12) = downstream speed                                                                                  (s -12) =  upstream speed 
     Given Time = 3 hours 40 minutes = 220 minutes   = (220/60) h = (11/3) h                      Time = Distance/Speed
                  33/(s +12) + 33/(s-12) = 11/3                                                                               3{33(s-12) + 33(s +12)} = 11(s+12) (s -12)                                                          99(s -12 + s + 12) = 11(</span> s^{2} + 12 s -12 s -144)                                                   99(2 s) = 11(s^{2} -144)                                                                                        198 s/11 = (s^{2} -144)                                                                                         18 s = (s^{2} -144)                                                                                            (s^{2} - 18 s - 144) = 0                                                                                         s^{2} - 24 s + 6 s -144 =0                                                                                       s(s- 24) + 6(s -24) =0                                                                                            (s -24) (s + 6) = 0                                                                                                  s -24 = 0, s + 6 =0                                                                                                s = 24, s = -6                                                                     Answer) s = 24 mph is the average speed of the boat relative to the water.  
You might be interested in
Find the measure of ΔABC. Show your work.
valina [46]

Answer:

Step-by-step explanation:    

7 0
3 years ago
Find the volume of the region between the planes x plus y plus 2 z equals 2 and 4 x plus 4 y plus z equals 8 in the first octant
Alex787 [66]

Find the intercepts for both planes.

Plane 1, <em>x</em> + <em>y</em> + 2<em>z</em> = 2:

y=z=0\implies x=2\implies (2,0,0)

x=z=0\implies y=2\implies(0,2,0)

x=y=0\implies 2z=2\implies z=1\implies(0,0,1)

Plane 2, 4<em>x</em> + 4<em>y</em> + <em>z</em> = 8:

y=z=0\implies4x=8\implies x=2\implies(2,0,0)

x=z=0\implies4y=8\impliesy=2\implies(0,2,0)

x=y=0\implies z=8\implies(0,0,8)

Both planes share the same <em>x</em>- and <em>y</em>-intercepts, but the second plane's <em>z</em>-intercept is higher, so Plane 2 acts as the roof of the bounded region.

Meanwhile, in the (<em>x</em>, <em>y</em>)-plane where <em>z</em> = 0, we see the bounded region projects down to the triangle in the first quadrant with legs <em>x</em> = 0, <em>y</em> = 0, and <em>x</em> + <em>y</em> = 2, or <em>y</em> = 2 - <em>x</em>.

So the volume of the region is

\displaystyle\int_0^2\int_0^{2-x}\int_{\frac{2-x-y}2}^{8-4x-4y}\mathrm dz\,\mathrm dy\,\mathrm dx=\displaystyle\int_0^2\int_0^{2-x}\left(8-4x-4y-\frac{2-x-y}2\right)\,\mathrm dy\,\mathrm dx

=\displaystyle\int_0^2\int_0^{2-x}\left(7-\frac72(x+y)\right)\,\mathrm dy\,\mathrm dx=\int_0^2\left(7(2-x)-\frac72x(2-x)-\frac74(2-x)^2\right)\,\mathrm dx

=\displaystyle\int_0^2\left(7-7x+\frac74 x^2\right)\,\mathrm dx=\boxed{\frac{14}3}

3 0
3 years ago
Pls help me on this question :-
Nastasia [14]

Answer:

We conclude that the rule for the table in terms of x and y is:

  • y = 3x+2

Step-by-step explanation:

The table indicates that there is constant change in the x and y values, meaning the table represents the linear function the graph of which would be a straight line.

We know the slope-intercept form of the line equation

y = mx+b

where m is the slope and b is the y-intercept.

Taking two points

  • (-2, -4)
  • (-1, -1)

Finding the slope between (-2, -4) and (-1, -1)

\mathrm{Slope}=\frac{y_2-y_1}{x_2-x_1}

\left(x_1,\:y_1\right)=\left(-2,\:-4\right),\:\left(x_2,\:y_2\right)=\left(-1,\:-1\right)

m=\frac{-1-\left(-4\right)}{-1-\left(-2\right)}

m=3

We know that the y-intercept can be determined by setting x = 0 and finding the corresponding y-value.

Taking another point (0, 2) from the table.

It means at x = 0, y = 2.

Thus, the y-intercept b = 2

Using the slope-intercept form of the linear line function

y = mx+b

substituting m = 3 and b = 2

y = 3x+2

Therefore, we conclude that the rule for the table in terms of x and y is:

  • y = 3x+2
7 0
3 years ago
I need help solving 10gallons = miles
Rzqust [24]

Answer:

50?

Step-by-step explanation:

Because its 50 miles per gallon, so gallon time 50 will be the miles? I'm not sure but i think it is

6 0
2 years ago
The length of time that an auditor spends reviewing an invoice is approximately normally distributed with a mean of 600 seconds
Bumek [7]
Answer: 11.5% 

Explanation:


Since 1 minute = 60 seconds, we multiply 12 minutes by 60 so that 12 minutes = 720 seconds. Thus, we're looking for a probability that the auditor will spend more than 720 seconds. 

Now, we get the z-score for 720 seconds by the following formula:

\text{z-score} =  \frac{x - \mu}{\sigma}

where 

t = \text{time for the auditor to finish his work } = 720 \text{ seconds}&#10;\\ \mu = \text{average time for the auditor to finish his work } = 600 \text{ seconds}&#10;\\ \sigma = \text{standard deviation } = 100 \text{ seconds}

So, the z-score of 720 seconds is given by:

\text{z-score} = \frac{x - \mu}{\sigma}&#10;\\&#10;\\ \text{z-score} = \frac{720 - 600}{100}&#10;\\&#10;\\ \boxed{\text{z-score} = 1.2}

Let

t = time for the auditor to finish his work
z = z-score of time t

Since the time is normally distributed, the probability for t > 720 is the same as the probability for z > 1.2. In terms of equation:

P(t \ \textgreater \  720) &#10;\\ = P(z \ \textgreater \  1.2)&#10;\\ = 1 - P(z \leq 1.2)&#10;\\ = 1 - 0.885&#10;\\  \boxed{P(t \ \textgreater \  720)  = 0.115}

Hence, there is 11.5% chance that the auditor will spend more than 12 minutes in an invoice. 
8 0
3 years ago
Other questions:
  • Which table shows the greatest ratio of fillers earned to hours worked?
    9·2 answers
  • Pedro mixes 3/4 teespoon of plant food into each gallong of water.How much teaspoons of plant food should Pedro mix into 5 gallo
    15·2 answers
  • 11)
    7·1 answer
  • PLEASE HELP!!! One step equation... solve by division b/7=5
    15·2 answers
  • Adeline has a 12 ounce glass of water. She drinks 3/4 of it. How many ounces did she drink?
    15·2 answers
  • Which Pythagorean identity is correct?
    8·2 answers
  • Determine the fraction for 0.54 in simplest form
    9·2 answers
  • 19) Oranges are $2.50 per pound. Which equation shows the number of 'p
    7·1 answer
  • A ladder is placed against a wall, such that it touches the top of the wall 6 meters above the ground. The ladder is inclined at
    13·1 answer
  • I need help with this
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!