Answer:
Diffusion requires energy only to move material through the cell membrane.
Explanation:
:)
Answer:
The electron’s velocity is 0.9999 c m/s.
Explanation:
Given that,
Rest mass energy of muon = 105.7 MeV
We know the rest mass of electron = 0.511 Mev
We need to calculate the value of γ
Using formula of energy


Put the value into the formula


We need to calculate the electron’s velocity
Using formula of velocity




Put the value into the formula



Hence, The electron’s velocity is 0.9999 c m/s.
The 'formulas' to use are just the definitions of 'power' and 'work':
Power = (work done) / (time to do the work)
and
Work = (force) x (distance) .
Combine these into one. Take the definition of 'Work', and write it in place of 'work' in the definition of power.
Power = (force x distance) / (time)
From the sheet, we know the power, the distance, and the time. So we can use this one formula to find the force.
Power = (force x distance) / (time)
Multiply each side by (time): (Power) x (time) = (force) x (distance)
Divide each side by (distance): Force = (power x time) / (distance).
Look how neat, clean, and simple that is !
Force = (13.3 watts) x (3 seconds) / (4 meters)
Force = (13.3 x 3 / 4) (watt-seconds / meter)
Force = 39.9/4 (joules/meter)
<em>Force = 9.975 Newtons</em>
Is that awesome or what !
<span>Each atom contains an equal number of protons and electrons; these particles will be equal in value to an element's atomic number</span>
The time required for a moon to orbit around the earth is about 27-28 days
In order for lunar eclipse to occur the line that should be formed is:
Sun-Earth-Moon
because earth is making shade on moon
in order for solar eclipse to occur the line is now:
Sun-Moon-Earth
because moon is making a shade on earth (blocking sun = solar eclipse)
Therefore moon needs to make half of its orbit to go from behind the earth to in front of the earth.
28/2 = 14
Answer is 14