Answer:
Shield volcanoes, the third type of volcano, are built almost entirely of fluid lava flows. Flow after flow pours out in all directions from a central summit vent, or group of vents, building a broad, gently sloping cone of flat, domical shape, with a profile much like that of a warrior's shield.
Explanation:
Answer:
1) Acids have a sour taste , Bases have a bitter taste.
2) Acids turn blue litmus paper into red , Bases turn red litmus paper into blue.
3) Acids react with most metals to form Hydrogen gas but only a few base react with a few metals to form Hydrogen gas
4) Both will conduct electricity. Both acids & bases are good electrolytes. Strong acids & bases conduct more electricity than that of weak acids & bases
Answer:
E=12.2V/m
Explanation:
To solve this problem we must address the concepts of drift velocity. A drift velocity is the average velocity attained by charged particles, such as electrons, in a material due to an electric field.
The equation is given by,

Where,
V= Drift Velocity
I= Flow of current
n= number of electrons
q = charge of electron
A = cross-section area.
For this problem we know that there is a rate of 1.8*10^{18} electrons per second, that is



Mobility
We can find the drift velocity replacing,


The electric field is given by,



Answer:
22.11 m / s
Explanation:
The falcon catches the prey from behind means both are flying in the same direction ( suppose towards the left )
initial velocity of falcon = 28 cos 35 i - 28 sin 35 j
( falcon was flying in south east direction making 35 degree from the east )
momentum = .9 ( 28 cos 35 i - 28 sin 35 j )
= 20.64 i - 14.45 j
initial velocity of pigeon
= 7 i
initial momentum = .325 x 7i
= 2.275 i
If final velocity of composite mass of falcon and pigeon be V
Applying law of conservation of momentum
( .9 + .325) V = 20.64 i - 14.45 j +2.275 i
V = ( 22.915 i - 14.45 j ) / 1.225
= 18.70 i - 11.8 j
magnitude of V
= √ [ (18.7 )² + ( 11.8 )²]
= 22.11 m / s
Answer:
v₂ = 306.12 m/s
Explanation:
We know that the volume flow rate of the water or any in-compressible liquid remains constant throughout motion. Therefore, from continuity equation, we know that:
A₁v₁ = A₂v₂
where,
A₁ = Area of entrance pipe = πd₁²/4 = π(0.016 m)²/4 = 0.0002 m²
v₁ = entrance velocity = 3 m/s
A₂ = Area of nozzle = πd₂²/4 = π(0.005 m)²/4 = 0.0000196 m²
v₂ = exit velocity = ?
Therefore,
(0.0002 m²)(3 m/s) = (0.0000196 m²)v₂
v₂ = (0.006 m³/s)/(0.0000196 m²)
<u>v₂ = 306.12 m/s</u>