The energy achieved I think
The law of conservation of energy is:
-- Energy can't be created or destroyed.
-- Energy can't just appear out of nowhere. If you suddenly have
more energy, then the 'extra' energy had to come from somewhere.
-- Energy can't just disappear. If you suddenly have less energy,
then the 'missing' energy had to go somewhere.
________________________________________
There are also conservation laws for mass and electric charge.
They say exactly the same thing. Just write 'mass' or 'charge'
in the sentences up above, in place of the word 'energy'.
________________________________________
And now I can tell you that the conservation laws for energy and mass
are actually one single law ... the conservation of mass/energy. That's
because we discovered about 100 years ago that mass can convert
into energy, and energy can convert into mass, and it's the total of BOTH
of them that gets conserved (can't be created or destroyed).
How much mass makes how much energy ?
The answer is E = m c² .
To solve this problem we will apply the concepts related to load balancing. We will begin by defining what charges are acting inside and which charges are placed outside.
PART A)
The charge of the conducting shell is distributed only on its external surface. The point charge induces a negative charge on the inner surface of the conducting shell:
. This is the total charge on the inner surface of the conducting shell.
PART B)
The positive charge (of the same value) on the external surface of the conducting shell is:

The driver's net load is distributed through its outer surface. When inducing the new load, the total external load will be given by,



Answer:
A. 181.24 N
Explanation:
The magnitude of hte electrostatic force between two charged objects is given by the equation

where
k is the Coulomb's constant
q1, q2 are the magnitudes of the two charges
r is the separation between the charges
In this problem, we have:
is the magnitude of the 1st charge
is the magnitude of the 2nd charge
r = 2.5 cm = 0.025 m is the separation between the charges
Therefore, the magnitude of the electric force is:

So, the closest answer is
A) 181.24 N
Answer:
https://gml.noaa.gov/education/info_activities/pdfs/LA_radiation.pdf
Explanation: