The formation of ammonia gas involves reacting hydrogen gas and nitrogen gas in a mole ratio of 3 to 1. as shown below:
<h3>What is the equation of the formation of ammonia?</h3>
Ammonia gas is formed from the reaction between nitrogen gas and hydrogen gas.
Three moles of hydrogen gas will react with 1 mole of nitrogen gas to form 2 moles of ammonia gas.
The equation of the reaction is given below as:
![N_2 + 3H_2 \rightarrow 2NH_3](https://tex.z-dn.net/?f=N_2%20%2B%203H_2%20%5Crightarrow%202NH_3)
Therefore, the formation of ammonia gas involves reacting hydrogen gas and nitrogen gas in a mole ratio of 3 to 1.
Learn more about ammonia gas at: brainly.com/question/7982628
Answer:
4feet
Explanation:
Because when he moves he only goes 4 miles every time I
The empirical formula is a formula of a compound showing the proportion of each element involved in the compounds but it does not represent the total number of atoms in the compound. It is the lowest number of ratio between the elements in the compound. In order, to determine the actual number of the atoms or the molecular formula of the compounds, we make use of the molar mass of the compound.
<span>To
determine the molecular formula, we multiply a value to the empirical formula.
Then, calculate the molar mass and see whether it is equal to the one
given (104.1 g/ mol). From the choices, the only valid options are b, d and e.
</span> molar mass
1 CH 13.02
8 C8H8 104.16
6 C6H6 78.12
Therefore the correct answer is option B.
Answer:
See below
Step-by-step explanation:
- Hydrogen either reacts with or is formed by reactions with many other elements, so chemists could use it directly to determine their relative masses.
- Hydrogen has the smallest atomic mass, so it was convenient to give H a relative atomic mass of 1 and assign those of other elements as multiples of this number.
The O = 16 scale became the standard in 1903 and carbon-12 was chosen in 1961.
<h3>
Answer:</h3>
0.50 mol SiO₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
30 g SiO₂ (sand)
<u>Step 2: Identify Conversions</u>
Molar Mass of Si - 28.09 g/mol
Molar Mass of O - 16.00 g/mol
Molar Mass of SiO₂ - 28.09 + 2(16.00) = 60.09 g/mol
<u>Step 3: Convert</u>
- Set up:
![\displaystyle 30 \ g \ SiO_2(\frac{1 \ mol \ SiO_2}{60.09 \ g \ SiO_2})](https://tex.z-dn.net/?f=%5Cdisplaystyle%2030%20%5C%20g%20%5C%20SiO_2%28%5Cfrac%7B1%20%5C%20mol%20%5C%20SiO_2%7D%7B60.09%20%5C%20g%20%5C%20SiO_2%7D%29)
- Multiply/Divide:
![\displaystyle 0.499251 \ mol \ SiO_2](https://tex.z-dn.net/?f=%5Cdisplaystyle%200.499251%20%5C%20mol%20%5C%20SiO_2)
<u>Step 4: Check</u>
<em>Follow sig figs and round. We are given 2 sig figs.</em>
0.499251 mol SiO₂ ≈ 0.50 mol SiO₂