Divide by the molar mass of HCl which is 36.5g/mol grams cancels out and you are left with 1.99 mol.
Answer : The correct option is, (C) 0.675 M
Explanation :
Using neutralization law,

where,
= concentration of
= 13.5 M
= concentration of diluted solution = ?
= volume of
= 25.0 ml = 0.0250 L
conversion used : (1 L = 1000 mL)
= volume of diluted solution = 0.500 L
Now put all the given values in the above law, we get the concentration of the diluted solution.


Therefore, the concentration of the diluted solution is 0.675 M
pH is an important parameter for many reactions to take place in solution and in biological systems. It is related to the concentration of H⁺ ions through the following expression:
pH = 1/[H⁺] = -log [H⁺]
Wanting to know the pH of a solution is equivalent to knowing the amount of hydrogen ions present. But the pH scale is more convenient than the concentration scale because pH usually takes values between 0 and 14.
- When pH < 7 the solution is acid.
- When pH = 7 the solution is neutral (like pure water).
- When pH > 7 the solution is basic.
As you increase in elevation, there is less air above you thus the pressure decreases. As the pressure decreases, air molecules spread out further (i.e. air expands) and the temperature decreases. If the humidity is at 100 percent (because it's snowing), the temperature decreases more slowly with height.